Algebraic Curves of Low Convolution Degree
Abstract
Studying convolutions of hypersurfaces (especially of curves and surfaces) has become an active research area in recent years. The main characterization from the point of view of convolutions is their convolution degree, which is an affine invariant associated to a hypersurface describing the complexity of the shape with respect to the operation of convolution. Extending the results from [1], we will focus on the two simplest classes of planar algebraic curves with respect to the operation of convolution, namely on the curves with the convolution degree one (so called LN curves) and two. We will present an algebraic analysis of these curves, provide their decomposition, and study their properties.
Keywords
Curve Versus Algebraic Curf Geometric Design Rational Curf Hermite InterpolationPreview
Unable to display preview. Download preview PDF.
References
- 1.Vršek, J., Lávička, M.: On convolution of algebraic curves. Journal of Symbolic Computation 45(6), 657–676 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 2.Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Heidelberg (2008)CrossRefMATHGoogle Scholar
- 3.Farouki, R., Sakkalis, T.: Pythagorean hodographs. IBM Journal of Research and Development 34(5), 736–752 (1990)MathSciNetCrossRefGoogle Scholar
- 4.Farouki, R., Sakkalis, T.: Pythagorean-hodograph space curves. Adv. Comput. Math. 2, 41–66 (1994)MathSciNetCrossRefMATHGoogle Scholar
- 5.Kosinka, J., Jüttler, B.: G 1 Hermite interpolation by Minkowski Pythagorean hodograph cubics. Computer Aided Geometric Design 23, 401–418 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 6.Kosinka, J., Jüttler, B.: MOS surfaces: Medial surface transforms with rational domain boundaries. In: Martin, R., Sabin, M.A., Winkler, J.R. (eds.) Mathematics of Surfaces 2007. LNCS, vol. 4647, pp. 245–262. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 7.Kosinka, J., Lávička, M.: On rational Minkowski Pythagorean hodograph curves. Computer Aided Geometric Design 27(7), 514–524 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 8.Peternell, M., Pottmann, H.: A Laguerre geometric approach to rational offsets. Computer Aided Geometric Design 15, 223–249 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 9.Pottmann, H., Peternell, M.: Applications of Laguerre geometry in CAGD. Computer Aided Geometric Design 15, 165–186 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 10.Jüttler, B.: Triangular Bézier surface patches with linear normal vector field. In: Cripps, R. (ed.) The Mathematics of Surfaces VIII. Information Geometers, pp. 431–446 (1998)Google Scholar
- 11.Peternell, M., Manhart, F.: The convolution of a paraboloid and a parametrized surface. Journal for Geometry and Graphics 7(2), 157–171 (2003)MathSciNetMATHGoogle Scholar
- 12.Sampoli, M.L., Peternell, M., Jüttler, B.: Rational surfaces with linear normals and their convolutions with rational surfaces. Computer Aided Geometric Design 23(2), 179–192 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 13.Lávička, M., Bastl, B.: Rational hypersurfaces with rational convolutions. Computer Aided Geometric Design 24(7), 410–426 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 14.Lee, I.K., Kim, M.S., Elber, G.: Polynomial/rational approximation of Minkowski sum boundary curves. Graphical Models and Image Processing 60(2), 136–165 (1998)CrossRefGoogle Scholar
- 15.Gravesen, J., Jüttler, B., Šír, Z.: On rationally supported surfaces. Computer Aided Geometric Design 25, 320–331 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 16.Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theoretical Computer Science 392(1-3), 141–157 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 17.Arrondo, E., Sendra, J., Sendra, J.R.: Parametric generalized offsets to hypersurfaces. Journal of Symbolic Computation 23, 267–285 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 18.Arrondo, E., Sendra, J., Sendra, J.R.: Genus formula for generalized offset curves. Journal of Pure and Applied Algebra 136, 199–209 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 19.Sendra, J.R., Sendra, J.: Algebraic analysis of offsets to hypersurfaces. Mathematische Zeitschrift 237, 697–719 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 20.Šír, Z., Bastl, B., Lávička, M.: Hermite interpolation by hypocycloids and epicycloids with rational offsets. Computer Aided Geometric Design 27, 405–417 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 21.Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree seven. Math. Comp. 70, 1089–1111 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 22.Jüttler, B., Sampoli, M.: Hermite interpolation by piecewise polynomial surfaces with rational offsets. Computer Aided Geometric Design 17, 361–385 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 23.Meek, D.S., Walton, D.J.: Geometric Hermite interpolation with Tschirnhausen cubics. J. Comput. Appl. Math. 81(2), 299–309 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 24.Brieskorn, E., Knörer, H.: Plane algebraic curves. Birkhaüser, Basel (1986)CrossRefGoogle Scholar
- 25.Cox, D.A., Little, J., O’Shea, D.: Using algebraic geometry, 2nd edn. Springer, Heidelberg (2005)MATHGoogle Scholar
- 26.Fulton, W.: Algebraic Curves. Benjamin, New York (1969)MATHGoogle Scholar
- 27.Kim, M.S., Elber, G.: Problem reduction to parameter space. In: Proceedings of the 9th IMA Conference on the Mathematics of Surfaces, pp. 82–98. Springer, Heidelberg (2000)Google Scholar
- 28.Walker, R.: Algebraic Curves. Princeton University Press, Princeton (1950)MATHGoogle Scholar
- 29.Lávička, M., Bastl, B., Šír, Z.: Reparameterization of curves and surfaces with respect to their convolution. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) MMCS 2008. LNCS, vol. 5862, pp. 285–298. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 30.Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC (2005)Google Scholar
- 31.Hartshorne, R.: Algebraic Geometry. Springer, Heidelberg (1977)CrossRefMATHGoogle Scholar
- 32.Moon, H.: Minkowski Pythagorean hodographs. Computer Aided Geometric Design 16, 739–753 (1999)MathSciNetCrossRefMATHGoogle Scholar