Advertisement

Couple Points – A Local Approach to Global Surface Analysis

  • Christian Rössl
  • Holger Theisel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6920)

Abstract

We introduce the concept of couple points as a global feature of surfaces. Couple points are pairs of points \(({\mathbf x}_1,{\mathbf x}_2)\) on a surface with the property that the vector \({\mathbf x}_2 - {\mathbf x}_1\) is parallel to the surface normals both at \({\mathbf x}_1\) and \({\mathbf x}_2\). In order to detect and classify them, we use higher order local feature detection methods, namely a Morse theoretic approach on a 4D scalar field. We apply couple points to a number of problems in Computer Graphics: the detection of maximal and minimal distances of surfaces, a fast approximation of the shortest geodesic path between two surface points, and the creation of stabilizing connections of a surface.

Keywords

surface features double normals Morse theory triangular meshes geodesic paths 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Transactions on Graphics 22(3), 485–493 (2003)CrossRefGoogle Scholar
  2. 2.
    Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Symposium on Computational Geometry, pp. 360–369 (1990)Google Scholar
  3. 3.
    Culver, T., Keyser, J., Manocha, D.: Accurate computation of the medial axis of a polyhedron. In: Proc. ACM Symp. Solid Model. Appl., pp. 179–190 (1999)Google Scholar
  4. 4.
    Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-smale complexes for piecewise linear 3-manifolds. In: Proc. 19th Sympos. Comput. Geom. 2003, pp. 361–370 (2003)Google Scholar
  5. 5.
    Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical morse complexes for piecewise linear 2-manifolds. In: Proc. 17th Sympos. Comput. Geom. 2001 (2001)Google Scholar
  6. 6.
    Efimov, N.: Flächenverbiegungen im Grossen. Akademie-Verlag, Berlin (1957) (in German)Google Scholar
  7. 7.
    Ferrand, E.: On the Bennequin Invariant and the Geometry of Wave Fronts. Geometriae Dedicata 65, 219–245 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goldfeather, J., Interrante, V.: A novel cubic-order algorithm for approximating principal directions vectors. ACM Transactions on Graphics 23(1), 45–63 (2004)CrossRefGoogle Scholar
  9. 9.
    Guéziec, A.: Meshsweeper: Dynamic point-to-polygonal-mesh and applications. IEEE Transactions on Visualization and Computer Graphics 7(1), 47–61 (2001)CrossRefGoogle Scholar
  10. 10.
    Hahmann, S., Bonneau, G.P.: Smooth polylines on polygon meshes. In: Brunnett, G., Hamann, B., Müller, H. (eds.) Geometric Modeling for Scientific Visualization, pp. 69–84. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Hahmann, S., Belyaev, A., Buse, L., Elber, G., Mourrain, B., Rössl, C.: Shape interrogation. In: de Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring. ch. 1, Mathematics and Visualization, pp. 1–52. Springer, Berlin (2008)Google Scholar
  12. 12.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. SIGGRAPH, pp. 203–212 (2001)Google Scholar
  13. 13.
    Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. In: Proc. SIGGRAPH, pp. 284–293 (2004)Google Scholar
  14. 14.
    Kuiper, N.H.: Double normals of convex bodies. Israel J. Math. 2, 71–80 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Minagawa, T., Rado, R.: On the infinitesimal rigidity of surfaces. Osaka Math. J. 4, 241–285 (1952)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Mitchell, J.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (1998)Google Scholar
  18. 18.
    Ni, X., Garland, M., Hart, J.: Fair morse functions for extracting the topological structure of a surface mesh. In: Proc. SIGGRAPH, pp. 613–622 (2004)Google Scholar
  19. 19.
    Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes. ACM Computing Surveys 34(2) (2001)Google Scholar
  20. 20.
    Pham-Trong, V., Biard, L., Szafran, N.: Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes. Numerical Algorithms 26(4), 305–315 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: Hege, H.C., Polthier, K. (eds.) Mathematical Visualization, pp. 135–150. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes. In: 3DPVT, pp. 486–493 (2004)Google Scholar
  23. 23.
    Sheeny, D., Armstrong, C., Robinson, D.: Shape description by medial axis construction. IEEE Transactions on Visualization and Computer Graphics 2, 62–72 (1996)CrossRefGoogle Scholar
  24. 24.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Transactions on Graphics 24(3), 553–560 (2005)CrossRefGoogle Scholar
  25. 25.
    Theisel, H., Rössl, C., Zayer, R., Seidel, H.P.: Normal based estimation of the curvature tensor for triangular meshes. In: Proc. Pacific Graphics, pp. 288–297 (2004)Google Scholar
  26. 26.
    Xin, S.Q., Wang, G.J.: Improving Chen and Han’s algorithm on the discrete geodesic problem. ACM Transactions on Graphics 28(4), 104:1–104:8 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Rössl
    • 1
  • Holger Theisel
    • 1
  1. 1.Visual Computing GroupUniversity of MagdeburgGermany

Personalised recommendations