Couple Points – A Local Approach to Global Surface Analysis

  • Christian Rössl
  • Holger Theisel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6920)


We introduce the concept of couple points as a global feature of surfaces. Couple points are pairs of points \(({\mathbf x}_1,{\mathbf x}_2)\) on a surface with the property that the vector \({\mathbf x}_2 - {\mathbf x}_1\) is parallel to the surface normals both at \({\mathbf x}_1\) and \({\mathbf x}_2\). In order to detect and classify them, we use higher order local feature detection methods, namely a Morse theoretic approach on a 4D scalar field. We apply couple points to a number of problems in Computer Graphics: the detection of maximal and minimal distances of surfaces, a fast approximation of the shortest geodesic path between two surface points, and the creation of stabilizing connections of a surface.


surface features double normals Morse theory triangular meshes geodesic paths 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Transactions on Graphics 22(3), 485–493 (2003)CrossRefGoogle Scholar
  2. 2.
    Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Symposium on Computational Geometry, pp. 360–369 (1990)Google Scholar
  3. 3.
    Culver, T., Keyser, J., Manocha, D.: Accurate computation of the medial axis of a polyhedron. In: Proc. ACM Symp. Solid Model. Appl., pp. 179–190 (1999)Google Scholar
  4. 4.
    Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-smale complexes for piecewise linear 3-manifolds. In: Proc. 19th Sympos. Comput. Geom. 2003, pp. 361–370 (2003)Google Scholar
  5. 5.
    Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical morse complexes for piecewise linear 2-manifolds. In: Proc. 17th Sympos. Comput. Geom. 2001 (2001)Google Scholar
  6. 6.
    Efimov, N.: Flächenverbiegungen im Grossen. Akademie-Verlag, Berlin (1957) (in German)Google Scholar
  7. 7.
    Ferrand, E.: On the Bennequin Invariant and the Geometry of Wave Fronts. Geometriae Dedicata 65, 219–245 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goldfeather, J., Interrante, V.: A novel cubic-order algorithm for approximating principal directions vectors. ACM Transactions on Graphics 23(1), 45–63 (2004)CrossRefGoogle Scholar
  9. 9.
    Guéziec, A.: Meshsweeper: Dynamic point-to-polygonal-mesh and applications. IEEE Transactions on Visualization and Computer Graphics 7(1), 47–61 (2001)CrossRefGoogle Scholar
  10. 10.
    Hahmann, S., Bonneau, G.P.: Smooth polylines on polygon meshes. In: Brunnett, G., Hamann, B., Müller, H. (eds.) Geometric Modeling for Scientific Visualization, pp. 69–84. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Hahmann, S., Belyaev, A., Buse, L., Elber, G., Mourrain, B., Rössl, C.: Shape interrogation. In: de Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring. ch. 1, Mathematics and Visualization, pp. 1–52. Springer, Berlin (2008)Google Scholar
  12. 12.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. SIGGRAPH, pp. 203–212 (2001)Google Scholar
  13. 13.
    Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. In: Proc. SIGGRAPH, pp. 284–293 (2004)Google Scholar
  14. 14.
    Kuiper, N.H.: Double normals of convex bodies. Israel J. Math. 2, 71–80 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Minagawa, T., Rado, R.: On the infinitesimal rigidity of surfaces. Osaka Math. J. 4, 241–285 (1952)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Mitchell, J.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (1998)Google Scholar
  18. 18.
    Ni, X., Garland, M., Hart, J.: Fair morse functions for extracting the topological structure of a surface mesh. In: Proc. SIGGRAPH, pp. 613–622 (2004)Google Scholar
  19. 19.
    Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes. ACM Computing Surveys 34(2) (2001)Google Scholar
  20. 20.
    Pham-Trong, V., Biard, L., Szafran, N.: Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes. Numerical Algorithms 26(4), 305–315 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: Hege, H.C., Polthier, K. (eds.) Mathematical Visualization, pp. 135–150. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes. In: 3DPVT, pp. 486–493 (2004)Google Scholar
  23. 23.
    Sheeny, D., Armstrong, C., Robinson, D.: Shape description by medial axis construction. IEEE Transactions on Visualization and Computer Graphics 2, 62–72 (1996)CrossRefGoogle Scholar
  24. 24.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Transactions on Graphics 24(3), 553–560 (2005)CrossRefGoogle Scholar
  25. 25.
    Theisel, H., Rössl, C., Zayer, R., Seidel, H.P.: Normal based estimation of the curvature tensor for triangular meshes. In: Proc. Pacific Graphics, pp. 288–297 (2004)Google Scholar
  26. 26.
    Xin, S.Q., Wang, G.J.: Improving Chen and Han’s algorithm on the discrete geodesic problem. ACM Transactions on Graphics 28(4), 104:1–104:8 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Rössl
    • 1
  • Holger Theisel
    • 1
  1. 1.Visual Computing GroupUniversity of MagdeburgGermany

Personalised recommendations