Advertisement

Continuous Deformations by Isometry Preserving Shape Integration

  • Janick Martinez Esturo
  • Christian Rössl
  • Holger Theisel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6920)

Abstract

We introduce a novel continuous surface deformation method which relies on a time-dependent vector field over a triangular mesh. For every time step the piecewise linear vector field is obtained by least-squares minimization of the metric distortion induced by integration subject to boundary conditions. As an integral part of the approach, we introduce a new measure to describe local metric distortion which is invariant to the particular triangulation of the surface and which can incorporate smoothness of the field. Neither of these properties are met by previous work. A GPU implementation of the proposed algorithm enables fast deformations. The resulting deformations have lower metric distortions than deformations by existing (linear or non-linear) methods. This is shown for a number of representative test data sets.

Keywords

Shape Deformation Isometry Vector Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proc. SIGGRAPH, pp. 157–164 (2000)Google Scholar
  2. 2.
    Angelidis, A., Cani, M.P., Wyvill, G., King, S.: Swirling-sweepers: Constant volume modeling. In: Pacific Graphics (2004)Google Scholar
  3. 3.
    Au, O.K.C., Tai, C.L., Liu, L., Fu, H.: Dual laplacian editing for meshes. IEEE TVCG 12(3), 386–395 (2006)Google Scholar
  4. 4.
    Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. ACM Trans. Graphics 23(3), 630–634 (2004)CrossRefGoogle Scholar
  5. 5.
    Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: Primo: coupled prisms for intuitive surface modeling. In: SGP, pp. 11–20 (2006)Google Scholar
  6. 6.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14(1), 213–230 (2008)CrossRefGoogle Scholar
  7. 7.
    Botsch, M., Sumner, R., Pauly, M., Gross, M.: Deformation transfer for detail-preserving surface editing. In: Proc. of VMV, pp. 357–364 (2006)Google Scholar
  8. 8.
    do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)CrossRefzbMATHGoogle Scholar
  9. 9.
    Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Du, H., Qin, H.: Direct manipulation and interactive sculpting of PDE surfaces. CGF (Proc. Eurographics) 19(3), 261–270 (2000)CrossRefGoogle Scholar
  11. 11.
    Eckstein, I., Pons, J.P., Tong, Y., Kuo, C.C.J., Desbrun, M.: Generalized surface flows for mesh processing. In: SGP, pp. 183–192 (2007)Google Scholar
  12. 12.
    Efimow, N.: Flaechenverbiegungen in Grossen. Akadmie-Verlag (1957) (German)Google Scholar
  13. 13.
    English, E., Bridson, R.: Animating developable surfaces using nonconforming elements. ACM Trans. Graphics 27, 1–5 (2008)CrossRefGoogle Scholar
  14. 14.
    von Funck, W., Theisel, H., Seidel, H.P.: Vector field based shape deformations. In: Proc. SIGGRAPH, pp. 1118–1125 (2006)Google Scholar
  15. 15.
    von Funck, W., Theisel, H., Seidel, H.P.: Explicit control of vector field based shape deformations. In: Proc. Pacific Graphics, pp. 291–300 (2007)Google Scholar
  16. 16.
    Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graphics 25(3), 1126–1134 (2006)CrossRefGoogle Scholar
  17. 17.
    Kilian, M., Flöry, S., Chen, Z., Mitra, N.J., Sheffer, A., Pottmann, H.: Curved folding. ACM Trans. Graphics 27(3), 1–9 (2008)CrossRefGoogle Scholar
  18. 18.
    Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. ACM Trans. Graphics 26(3) (2007); Proc. SIGGRAPHGoogle Scholar
  19. 19.
    Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. In: Proc. SIGGRAPH, pp. 479–487. ACM Press, New York (2005)Google Scholar
  20. 20.
    Nealen, A., Mueller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. CGF 25, 809–836 (2006)Google Scholar
  21. 21.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  22. 22.
    Qin, H., Mandal, C., Vemuri, B.C.: Dynamic catmull-clark subdivision surfaces. IEEE Transactions on Visualization and Computer Graphics 4(3) (1998)Google Scholar
  23. 23.
    Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for gpu computing. In: GH 2007: Proc. of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware (2007)Google Scholar
  24. 24.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: SGP, pp. 175–184 (2004)Google Scholar
  25. 25.
    Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. ACM Trans. Graphics  26(3), 80:1–80:7 (2007)Google Scholar
  26. 26.
    Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., Guo, B.: Joint-aware manipulation of deformable models. In: Proc. SIGGRAPH (2009)Google Scholar
  27. 27.
    Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface deformation. CGF (Proc. EUROGRAPHICS) 24(3), 601–609 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Janick Martinez Esturo
    • 1
  • Christian Rössl
    • 1
  • Holger Theisel
    • 1
  1. 1.Visual Computing GroupUniversity of MagdeburgGermany

Personalised recommendations