On a Special Class of Polynomial Surfaces with Pythagorean Normal Vector Fields

  • Miroslav Lávička
  • Jan Vršek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6920)

Abstract

Rational shapes with rational offsets, especially Pythagorean hodograph (PH) curves and Pythagorean normal vector (PN) surfaces, have been thoroughly studied for many years. However compared to PH curves, Pythagorean normal vector surfaces were introduced using dual approach only in their rational version and a complete characterization of polynomial surfaces with rational offsets, i.e., a polynomial solution of the well-known surface Pythagorean condition, still remains an open and challenging problem. In this contribution, we study a remarkable family of cubic polynomial PN surfaces with birational Gauss mapping, which represent a surface counterpart to the planar Tschirnhausen cubic. A full description of these surfaces is presented and their properties are discussed.

Keywords

Geometric Design Rational Surface Polynomial Solution Parameter Line Isothermal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pottmann, H.: Rational curves and surfaces with rational offsets. Computer Aided Geometric Design 12(2), 175–192 (1995)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Farouki, R., Sakkalis, T.: Pythagorean hodographs. IBM Journal of Research and Development 34(5), 736–752 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Heidelberg (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Lü, W., Pottmann, H.: Rational parameterization of quadrics and their offsets. Computing 57, 135–147 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arrondo, E., Sendra, J., Sendra, J.R.: Parametric generalized offsets to hypersurfaces. Journal of Symbolic Computation 23, 267–285 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Arrondo, E., Sendra, J., Sendra, J.R.: Genus formula for generalized offset curves. Journal of Pure and Applied Algebra 136, 199–209 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Maekawa, T.: An overview of offset curves and surfaces. Computer-Aided Design 31, 165–173 (1999)CrossRefMATHGoogle Scholar
  8. 8.
    Sendra, J.R., Sendra, J.: Algebraic analysis of offsets to hypersurfaces. Mathematische Zeitschrift 237, 697–719 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Vršek, J., Lávička, M.: On convolution of algebraic curves. Journal of symbolic computation 45(6), 657–676 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Farouki, R.T., Pottmann, H.: Polynomial and rational Pythagorean-hodograph curves reconciled. In: Proceedings of the 6th IMA Conference on the Mathematics of Surfaces, pp. 355–378. Clarendon Press, New York (1996)Google Scholar
  11. 11.
    Jüttler, B.: Triangular Bézier surface patches with linear normal vector field. In: Cripps, R. (ed.) The Mathematics of Surfaces VIII. Information Geometers, pp. 431–446 (1998)Google Scholar
  12. 12.
    Lü, W.: Offset-rational parametric plane curves. Comput. Aided Geom. Des. 12(6), 601–616 (1995)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lávička, M., Bastl, B.: Rational hypersurfaces with rational convolutions. Computer Aided Geometric Design 24(7), 410–426 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Peternell, M., Odehnal, B.: Convolution surfaces of quadratic triangular Bézier surfaces. Computer Aided Geometric Design 25, 116–129 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Bastl, B., Jüttler, B., Kosinka, J., Lávička, M.: Computing exact rational offsets of quadratic triangular Bézier surface patches. Computer-Aided Design 40, 197–209 (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Ueda, K.: Pythagorean-hodograph curves on isothermal surfaces. In: Cripps, R. (ed.) The Mathematics of Surfaces. VIII. Proceedings of the 8th IMA Conference Held in Birmingham, GB, pp. 339–353. Information Geometers, Winchester (1998)Google Scholar
  17. 17.
    Lávička, M., Bastl, B.: PN surfaces and their convolutions with rational surfaces. Computer Aided Geometric Design 25, 763–774 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kim, G.I., Lee, S.: Pythagorean-hodograph preserving mappings. J. Comput. Appl. Math. 216(1), 217–226 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gravesen, J., Jüttler, B., Šír, Z.: On rationally supported surfaces. Computer Aided Geometric Design 25, 320–331 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theoretical Computer Science 392(1-3), 141–157 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lávička, M., Bastl, B., Šír, Z.: Reparameterization of curves and surfaces with respect to their convolution. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) MMCS 2008. LNCS, vol. 5862, pp. 285–298. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Farin, G.: Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miroslav Lávička
    • 1
  • Jan Vršek
    • 1
  1. 1.Faculty of Applied Sciences, Department of MathematicsUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations