Verified Spatial Subdivision of Implicit Objects Using Implicit Linear Interval Estimations

  • Stefan Kiel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6920)

Abstract

In this paper we describe the LIETree, a new data structure for verified spatial decomposition of implicit objects. The LIETree is capable of utilizing implicit linear interval estimations for calculating a verified enclosure of the implicit function’s codomain. Furthermore, it uses consistency techniques to tighten the object enclosure. Overall, it delivers improved accuracy and uses fewer nodes than common uniform subdivision schemes using interval or affine arithmetic for enclosure.

Keywords

Interval Arithmetic Interval Extension Hierarchical Decomposition Interval Vector Spatial Subdivision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alefeld, G., Herzberger, J.: Introduction to interval computations. Academic Press, New York (1983)MATHGoogle Scholar
  2. 2.
    Bühler, K.: Implicit linear interval estimations. In: Proceedings of the 18th Spring Conference on Computer Graphics, p. 132. ACM, New York (2002)Google Scholar
  3. 3.
    Chakraborty, N., Peng, J., Akella, S., Mitchell, J.E.: Proximity queries between convex objects: An interior point approach for implicit surfaces. IEEE Transactions on Robotics 24(1), 211–220 (2008)CrossRefGoogle Scholar
  4. 4.
    Cuypers, R., Kiel, S., Luther, W.: Automatic femur decomposition, reconstruction and refinement using superquadric shapes. In: Proceedings of the IASTED International Conference, vol. 663, p. 59 (2009)Google Scholar
  5. 5.
    Dyllong, E., Grimm, C.: A modified reliable distance algorithm for octree-encoded Ojects. PAMM 7(1), 4010015–4010016 (2007)CrossRefGoogle Scholar
  6. 6.
    Dyllong, E., Grimm, C.: Verified adaptive octree representations of constructive solid geometry objects. In: Simulation und Visualisierung, pp. 223–235. Citeseer (2007)Google Scholar
  7. 7.
    de Figueiredo, L., Stolfi, J.: Self-validated numerical methods and applications. IMPA, Rio de Janeiro (1997)Google Scholar
  8. 8.
    Fryazinov, O., Pasko, A., Comninos, P.: Fast reliable interrogation of procedurally defined implicit surfaces using extended revised affine arithmetic. Computers & Graphics (2010) (in Press) (Corrected Proof), http://www.sciencedirect.com/science/article/B6TYG-50KC6R9-1/2/41965886a337f58408f2fdf8b1d2d4bc
  9. 9.
    Gay, O., Coeurjolly, D., Hurst, N.J.: libaffa webpage. onlineGoogle Scholar
  10. 10.
    Hansen, E., Walster, G.W.: Global optimization using interval analysis. Marcel Dekker, New York (2004)MATHGoogle Scholar
  11. 11.
    Klatte, R.: C-XSC: A C++ class library for extended scientific computing. Springer-Verlag New York, Inc., Secaucus (1993); translator-Corliss, G. FMATHGoogle Scholar
  12. 12.
    Messine, F., Touhami, A.: A general reliable quadratic form: An extension of affine arithmetic. Reliable Computing 12, 171–192 (2006), http://dx.doi.org/10.1007/s11155-006-7217-4, doi:10.1007/s11155-006-7217-4MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Samet, H.: Foundations of multidimensional and metric data structures. Morgan Kaufmann, San Francisco (2006)MATHGoogle Scholar
  14. 14.
    Shapiro, V.: Theory of R-functions and applications: A primer (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Kiel
    • 1
  1. 1.University of Duisburg-EssenDuisburgGermany

Personalised recommendations