Stable Splitting of Bivariate Splines Spaces by Bernstein-Bézier Methods

  • Oleg Davydov
  • Abid Saeed
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6920)


We develop stable splitting of the minimal determining sets for the spaces of bivariate C 1 splines on triangulations, including a modified Argyris space, Clough-Tocher, Powell-Sabin and quadrilateral macro-element spaces. This leads to the stable splitting of the corresponding bases as required in Böhmer’s method for solving fully nonlinear elliptic PDEs on polygonal domains.


Fully nonlinear PDE Monge-Ampère equation multivariate splines Bernstein-Bézier techniques 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Böhmer, K.: Numerical Methods for Nonlinear Elliptic Differential Equations: A Synopsis. Oxford University Press, Oxford (2010)CrossRefMATHGoogle Scholar
  3. 3.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Wiley Interscience, Hoboken (1989)CrossRefMATHGoogle Scholar
  4. 4.
    Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Computer Methods in Applied Mechanics and Engineering 195, 1344–1386 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Davydov, O.: Stable local bases for multivariate spline spaces. J. Approx. Theory 111, 267–297 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Davydov, O.: Smooth finite elements and stable splitting, Berichte “Reihe Mathematik” der Philipps-Universität Marburg, 2007-4 (2007); An adapted version has appeared as Section 4.2.6 in [2]Google Scholar
  7. 7.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer, Berlin (2001)MATHGoogle Scholar
  8. 8.
    Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oleg Davydov
    • 1
  • Abid Saeed
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of StrathclydeGlasgowUnited Kingdom

Personalised recommendations