Recurring Element Detection in Movies

  • Maia Zaharieva
  • Christian Breiteneder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7131)


Recurring elements in movies contribute significantly to the development of narration, themes, or even mood. The detection of such elements is impeded by the large variance of their visual appearance and usually relies on the experience and attentiveness of the viewer. In this paper, we present a new approach for the automated detection of recurring elements in movies such as motifs and main characters. Performed experiments show the reliability of the algorithm and its potential for automated high-level film analysis.


film analysis dominant object detection motif detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beaver, F.E.: Dictionary of film terms: the aesthetic companion to film art. Peter Lang Publishing (2009)Google Scholar
  2. 2.
    Bordwell, D., Thompson, K.: Film art: an introduction. McGraw-Hill (2008)Google Scholar
  3. 3.
    Celik, H., Hanjalic, A., Hendriks, E.A.: Unsupervised and simultaneous training of multiple object detectors from unlabeled surveillance video. Computer Vision and Image Understanding 113(10), 1076–1094 (2009)CrossRefGoogle Scholar
  4. 4.
    Celik, H., Hanjalic, A., Hendriks, E.A., Boughorbel, S.: Online training of object detectors from unlabeled surveillance video. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–7 (2008)Google Scholar
  5. 5.
    Douze, M., Jégou, H., Schmid, C.: An image-based approach to video copy detection with spatio-temporal post-filtering. IEEE Trans. Multimedia, 257–266 (2010)Google Scholar
  6. 6.
    Ess, A., Schindler, K., Leibe, B., Gool, L.V.: Object detection and tracking for autonomous navigation in dynamic environments. International Journal of Robotics Research 29(14), 1707–1725 (2010)CrossRefGoogle Scholar
  7. 7.
    Guo, W., Xu, C., Ma, S., Xu, M.: Visual Attention Based Motion Object Detection and Trajectory Tracking. In: Qiu, G., Lam, K.M., Kiya, H., Xue, X.-Y., Kuo, C.-C.J., Lew, M.S. (eds.) PCM 2010, Part II. LNCS, vol. 6298, pp. 462–470. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Huang, C.R., Chen, C.S.: Video scene detection by link-constrained affinity-propagation. In: IEEE Int. Symp. on Circuits and Systems, pp. 2834–2837 (2009)Google Scholar
  9. 9.
    Joly, A., Frélicot, C., Buisson, O.: Content-based copy detection using distortion-based probabilistic similarity search. IEEE Trans. MM 9(2), 293–306 (2007)Google Scholar
  10. 10.
    Leibe, B., Schindler, K., Cornelis, N., Van Gool, L.: Coupled object detection and tracking from static cameras and moving vehicles. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1683–1698 (2008)CrossRefGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Shen, H.T., Liu, J., Huang, Z., Ngo, C.W., Wang, W.: Near-duplicate video retrieval: Current research and future trends. IEEE Multimedia (2011)Google Scholar
  13. 13.
    Truong, B.T., Dorai, C., Venkatesh, S.: New enhancements to cut, fade, and dissolve detection processes in video segmentation. In: ACM International Conference on Multimedia, pp. 219–227 (2000)Google Scholar
  14. 14.
    Zhao, W.L., Ngo, C.W., Tan, H.K., Wu, X.: Near-duplicate keyframe identification with interest point matching and pattern learning. IEEE Trans. Multimedia 9(5), 1037–1048 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maia Zaharieva
    • 1
  • Christian Breiteneder
    • 1
  1. 1.Interactive Media Systems GroupVienna University of TechnologyViennaAustria

Personalised recommendations