Uncertainty Propagation in DT-MRI Anisotropy Isosurface Extraction

Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Scalar anisotropy indices are important means for the analysis and visualization of diffusion tensor fields. While the propagation of uncertainty and errors has been studied for a variety measures, this chapter additionally considers the extraction of isosurfaces from anisotropy fields. We use the numerical condition to estimate the uncertainty propagation from the diffusion tensor eigenvalues via fractional (FA) and relative anisotropy (RA) to the position and shape of isosurfaces. Using level crossing probabilities we quantify and visualize the spatial distribution of uncertain isosurfaces. The superiority of FA to RA in terms of uncertainty propagation that was shown for anisotropy images in the literature does not hold for isosurfaces extracted from these images. Instead, our results indicate that for the purpose of isosurface extraction both measures perform approximately equally well.

Keywords

Fractional Anisotropy Condition Number Volume Rendering Tensor Field Uncertainty Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson, A.W.: Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn. Reson. Med. 46(6), 1174–1188 (2001)Google Scholar
  2. 2.
    Special issue on Diffusion Imaging: Magn. Reson. Imaging Clin. N. Am. 19(1) (2011)Google Scholar
  3. 3.
    Bergmann, O., Lundervold, A., Steihaug, T.: Generating a synthetic diffusion tensor dataset. In: Proceedings of 18th IEEE Symposium on Computer-Based Medical Systems, 2005, Dublin, pp. 277–281 (2005)Google Scholar
  4. 4.
    Brecheisen, R., Vilanova, A., Platel, B., ter Haar Romeny, B.: Parameter sensitivity visualization for DTI fiber tracking. IEEE Trans. Vis. Comput. Graph. 15, 1441–1448 (2009)Google Scholar
  5. 5.
    Chang, L.C., Koay, C.G., Pierpaoli, C., Basser, P.J.: Variance of estimated DTI-derived parameters via first-order perturbation methods. Magn. Reson. Med. 57(1), 141–149 (2007)Google Scholar
  6. 6.
    Deuflhard, P., Hohmann, A.: Numerical Analysis in Modern Scientific Computing: An Introduction, 2nd edn. Springer, New York (2003)Google Scholar
  7. 7.
    Ennis, D.B., Kindlmann, G.: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magn. Reson. Med. 55(1), 136–146 (2006)Google Scholar
  8. 8.
    Filler, A.G.: MR neurography and diffusion tensor imaging: origins, history & clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5,000 patient study group. Neurosurgery 65(4 Suppl), A29–A43 (2009)Google Scholar
  9. 9.
    Friman, O., Farneback, G., Westin, C.F.: A Bayesian approach for stochastic white matter tractography. TMI 25(8), 965–978 (2006)Google Scholar
  10. 10.
    Hasan, K.M., Alexander, A.L., Narayana, P.A.: Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach. Magn. Reson. Med. 51(2), 413–417 (2004)Google Scholar
  11. 11.
    Hotz, I., Sreevalsan-Nair, J., Hagen, H., Hamann, B.: Tensor field reconstruction based on eigenvector and eigenvalue interpolation. In: Hagen, H. (ed.) Scientific Visualization: Advanced Concepts, Dagstuhl Follow-Ups, vol. 1, pp. 110–123. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany (2010)Google Scholar
  12. 12.
    Jones, D.K.: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn. Reson. Med. 49, 7–12 (2003)Google Scholar
  13. 13.
    Koay, C.G., Chang, L.C., Pierpaoli, C., Basser, P.C.J.: Error propagation framework for diffusion tensor imaging via diffusion tensor representations. IEEE Trans. Med. Imaging 26(8), 1017–1034 (2007)Google Scholar
  14. 14.
    Lazar, M., Alexander, A.L.: An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations. NeuroImage 20(2), 1140–1153 (2003)Google Scholar
  15. 15.
    Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13(4), 534–546 (2001)Google Scholar
  16. 16.
    Murphy, D.B.: Fundamentals of Light Microscopy and Electronic Imaging. Wiley-Liss, New York (2001)Google Scholar
  17. 17.
    Pajevic, S., Basser, P.J.: Parametric and non-parametric statistical analysis of DT-MRI data. J. Magn. Reson. 161(1), 1–14 (2003)Google Scholar
  18. 18.
    Papadakis, N., Xing, D., Houston, G., Smith, J., Smith, M., James, M., Parsons, A., Huang, C.H., Hall, L., Carpenter, T.: A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn. Reson. Imaging 17, 881–892(12) (1999)Google Scholar
  19. 19.
    Peizer, D.B., Pratt, J.W.: A normal approximation for the binomial, F, beta, and other common, related tail probabilities, I and II. J. Am. Stat. Assoc. 63(324), 1416–1457 (1968)Google Scholar
  20. 20.
    Pierpaoli, C., Basser, P.J.: Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36(6), 893–906 (1996)Google Scholar
  21. 21.
    Pöthkow, K., Hege, H.C.: Positional uncertainty of isocontours: condition analysis and probabilistic measures. IEEE Trans. Vis. Comput. Graph. 17, 1393–1406 (2011) (Preprint)Google Scholar
  22. 22.
    Schultz, T., Theisel, H., Seidel, H.P.: Segmentation of DT-MRI anisotropy isosurfaces. In: Museth, K., Möller, T., Ynnerman, A. (eds.) EuroVis07: Joint Eurographics – IEEE VGTC Symposium on Visualization 2007, pp. 187–194. Eurographics, Norrköping (2007)Google Scholar
  23. 23.
    Snook, L., Plewes, C., Beaulieu, C.: Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. NeuroImage 34(1), 243–252 (2007)Google Scholar
  24. 24.
    Zhukov, L., Museth, K., Breen, D., Whitaker, R., Barr, A.H.: Level set modeling and segmentation of DT-MRI brain data. J. Electron. Imaging 12, 125–133 (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations