Abstract

These lectures give an overview of the ongoing application of effective field theory (EFT) and renormalization group (RG) concepts and methods to density functional theory (DFT), with special emphasis on the nuclear many-body problem. Many of the topics covered are still in their infancy, so rather than a complete review these lectures aim to provide an introduction to the developing literature.

Keywords

Density Functional Theory Renormalization Group Local Density Approximation Effective Field Theory Power Counting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I thank the organizers of the Trento school, Janos Polonyi and Achim Schwenk, for the opportunity to participate in an excellent lecture series, and all the student participants, who made giving the lectures a pleasure. This work was supported in part by the National Science Foundation under Grant No. PHY–0354916.

References

  1. 1.
    Recall that the wave function of a system of identical fermions must be antisymmetric under exchange of any two particles. This has important consequences for many-body systems, such as the development of a Fermi sea and “Pauli blocking”Google Scholar
  2. 2.
    This figure was made by Jacek DobaczewskiGoogle Scholar
  3. 3.
    Preson, M.A., Bhaduri, R.K.: Structure of the Nucleus. Addison-Wesley, Reading (1975)Google Scholar
  4. 4.
    Jackson, A.D.: The once and future nuclear many-body problem. In: Ainsworth, T.L., Campbell, C.E., Clements, B.E., Krotscheck, E. (eds.) Recent Progress in Many-Body Theories, vol. 3. Plenum, New York (1992)Google Scholar
  5. 5.
    Jackson, A.D., Wettig, T.: Phys. Rep. 237, 325 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    This figure was adapted by Achim Schwenk from a picture by A. RichterGoogle Scholar
  7. 7.
    This discussion is adapted from a talk by Joe CarlsonGoogle Scholar
  8. 8.
    Ring, P., Schuck, P.: The Nuclear Many-Body Problem. Springer, Berlin (2005)Google Scholar
  9. 9.
    Dreizler, R.M., Gross, E.K.U.: Density Functional Theory. Springer, Berlin (1990)Google Scholar
  10. 10.
    Argaman, N., Makov, G.: Am. J. Phys. 68, 69 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Fiolhais, C., Nogueira, F., Marques, M. (eds.): A Primer in Density Functional Theory. Springer, Berlin (2003)Google Scholar
  12. 12.
    The term “ab initio” is often used in this context, but the calculations do not in practice proceed only from the Coulomb interactionGoogle Scholar
  13. 13.
    Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory. Wiley, New York (2000)Google Scholar
  14. 14.
    Perdew, J.P., Kurth, S., Zupan, A., Blaha, P.: Phys. Rev. Lett. 82, 2544 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Polonyi, J., Sailer, K.: Phys. Rev. B 66, 155113 (2002) [arXiv:cond-mat/0108179]Google Scholar
  16. 16.
    Bogner, S.K., Schwenk, A., Furnstahl, R.J., Nogga, A.: Nucl. Phys. A 763, 59 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Wiringa, R.B., Stoks, V.G.J., Schiavilla, R.: Phys. Rev. C 51, 38 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Vautherin, D., Brink, D.M.: Phys. Rev. C 5, 626 (1972)ADSCrossRefGoogle Scholar
  19. 19.
    Dobaczewski, J., Nazarewicz, W., Reinhard, P.G.: Nucl. Phys. A 693, 361 (2001) [arXiv:nucl-th/0103001]Google Scholar
  20. 20.
    Bender, M., Heenen, P.H., Reinhard, P.-G.: Rev. Mod. Phys. 75, 121 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    A “local” potential is one whose action on a wavefunction in the Schrödinger equation is just \(V({ r})\psi ({ r})\); that is, it happens at one point. More generally, we expect something like \(\int \! d{ r^{\prime }}\, V({ r},{ r^{\prime }})\psi ({ r^{\prime }})\), which is not diagonal in coordinate representation. In momentum representation, this means \(\langle k | V | { k^{\prime }} \rangle \) is not a function of \({ q} \equiv k - { k^{\prime }}\) onlyGoogle Scholar
  22. 22.
    The goal of devising a potential that fits the scattering data as best as possible (that is, \(\chi ^2/\text{ dof} \approx 1\)) below where inelastic effects become important has been realized by several potentials, including CD-Bonn, Nijmegen I and II, and Argonne \(v_{18}\) Google Scholar
  23. 23.
    Calculations of the energy of few-body nuclei using accurate two-body potentials have demonstrated the need for a three-body forceGoogle Scholar
  24. 24.
    All NN potentials have a cut-off on high-momentum (short-distance) contributions. Putting in a cut-off doesn’t mean the high-energy physics is thrown out, however! We need to renormalize (this is one of the main points of our discussion)Google Scholar
  25. 25.
    One way of specifying a many-body approximation is to say which Feynman diagrams are included. (If all are included, we’re solving the problem exactly!) Usually one needs to select an (infinite) subset (for example, the ladder or ring diagrams). In some case there are rigorous justifications for which to sum, but not always and there are seldom estimates available for what quantitative error is made by the truncationGoogle Scholar
  26. 26.
    Lepage, G.P.: What is renormalization? In: DeGrand, T., Toussaint, D. (eds.) From Actions to Answers (TASI-89), p. 483. World Scientific, Singapore (1989)Google Scholar
  27. 27.
    Lepage, G.P.: How to renormalize the Schrödinger equation. Lectures given at 9th Jorge Andre Swieca Summer School: Particles and Fields, Sao Paulo, Brazil (1997). arXiv:nucl-th/9706029Google Scholar
  28. 28.
    Bogner, S.K., Furnstahl, R.J.: Phys. Lett. B 632, 501 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Bogner, S.K., Furnstahl, R.J.: Phys. Lett. B 639, 237 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Bogner, S.K., Kuo, T.T.S., Schwenk, A., Entem, D.R., Machleidt, R.: Phys. Lett. B 576, 265 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Bogner, S.K., Kuo, T.T.S., Schwenk, A.: Phys. Rept. 386, 1 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Bogner, S.K., Schwenk, A., Kuo, T.T.S., Brown, G.E.: arXiv:nucl-th/0111042Google Scholar
  33. 33.
    Bogner, S.K., Furnstahl, R.J., Ramanan, S., Schwenk, A.: Nucl. Phys. A773, 203 (2006)ADSGoogle Scholar
  34. 34.
    Kerman, A.K., Svenne, J.P., Villars, F.M.H.: Phys. Rev. 147, 710 (1966)ADSCrossRefGoogle Scholar
  35. 35.
    Bassichis, W.H., Kerman, A.K., Svenne, J.P.: Phys. Rev. 160, 746 (1967)ADSCrossRefGoogle Scholar
  36. 36.
    Strayer, M.R., Bassichis, W.H., Kerman, A.K.: Phys. Rev. C 8, 1269 (1973)ADSCrossRefGoogle Scholar
  37. 37.
    Nogga, A., Bogner, S.K., Schwenk, A.: Phys. Rev. C 70, 061002(R) (2004)Google Scholar
  38. 38.
    Negele, J.W., Orland, H.: Quantum Many-Particle Systems. Addison-Wesley, New York (1988)Google Scholar
  39. 39.
    Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, Chapter 12. 4th edn. Oxford University Press, New York (2002)Google Scholar
  40. 40.
    For the Minkowski-space version of this discussion, see S. Weinberg: The Quantum Theory of Fields: vol. II, Modern Applications. Cambridge University Press, Cambridge (1996)Google Scholar
  41. 41.
    Schwenk, A., Polonyi, J.: arXiv:nucl-th/0403011Google Scholar
  42. 42.
    Nagaosa, N.: Quantum Field Theory in Condensed Matter Physics. Springer, Berlin (1999)Google Scholar
  43. 43.
    Stone, M.: The Physics of Quantum Fields. Springer, Berlin (2000)Google Scholar
  44. 44.
    Fukuda, R., Komachiya, M., Yokojima, S., Suzuki, Y., Okumura, K., Inagaki, T.: Prog. Theor. Phys. Suppl. 121, 1 (1995)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Valiev, M., Fernando, G.W.: arXiv:cond-mat/9702247Google Scholar
  46. 46.
    Valiev, M., Fernando, G.W.: Phys. Lett. A 227, 265 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    Rasamny, M., Valiev, M.M., Fernando, G.W.: Phys. Rev. B 58, 9700 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    To derive the second equality for \(f_l(k)\), first put the \(e^{i\delta _l}\) in the denominator, then replace it by \(\cos + i\sin \) and divide top and bottom by \(\sin \) Google Scholar
  49. 49.
    Hammer, H.W., Furnstahl, R.J.: Nucl. Phys. A 678, 277 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    Beane, S.R., Bedaque, P.F., Haxton, W.C., Phillips, D.R., Savage, M.J.: arXiv:nucl-th/0008064Google Scholar
  51. 51.
    Braaten, E., Nieto, A.: Phys. Rev. B 55, 8090 (1997); 56, 14745 (1997)Google Scholar
  52. 52.
    Puglia, S.J., Bhattacharyya, A., Furnstahl, R.J.: Nucl. Phys. A 723, 145 (2003) [arXiv:nucl-th/0212071]Google Scholar
  53. 53.
    Bhattacharyya, A., Furnstahl, R.J.: Nucl. Phys. A 747, 268 (2005) [arXiv:nucl-th/0408014]Google Scholar
  54. 54.
    Bhattacharyya, A., Furnstahl, R.J.: Phys. Lett. B 607, 259 (2005) [arXiv:nucl-th/0410105]Google Scholar
  55. 55.
    Bartlett, R.J., Lotrich, V.F., Schweigert, I.V.: J. Chem. Phys. 123, 062205 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    Görling, A.: J. Chem. Phys. 123, 062203 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    Baerends, E.J., Gritsenko, O.V.: J. Chem. Phys. 123, 062202 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    Furnstahl, R.J., Hammer, H.W.: Phys. Lett. B 531, 203 (2002) [arXiv:nucl-th/0108069]Google Scholar
  59. 59.
    Bulgac, A.: Phys. Rev. C 65, 051305 (2002) [arXiv:nucl-th/0108014]Google Scholar
  60. 60.
    Bulgac, A., Yu, Y.: Phys. Rev. Lett. 88, 042504 (2002) [arXiv:nucl-th/0106062]Google Scholar
  61. 61.
    Yu, Y., Bulgac, A.: Phys. Rev. Lett. 90, 222501 (2003) [arXiv:nucl-th/0210047]Google Scholar
  62. 62.
    Oliveira, L.N., Gross, E.K.U., Kohn, W.: Phys. Rev. Lett. 60, 2430 (1988)ADSCrossRefGoogle Scholar
  63. 63.
    Kurth, S., Marques, M., Lüders, M., Gross, E.K.U.: Phys. Rev. Lett. 83, 2628 (1999)ADSCrossRefGoogle Scholar
  64. 64.
    Furnstahl, R.J., Hammer, H.W., Puglia, S.J.: Ann. Phys. 322, 2703 (2007) [arXiv:nucl-th/0612086]Google Scholar
  65. 65.
    Papenbrock, T., Bertsch, G.F.: Phys. Rev. C 59, 2052 (1999)ADSCrossRefGoogle Scholar
  66. 66.
    Gor’kov, L.P., Melik-Barkhudarov, T.K.: Sov. Phys. JETP 13, 1018 (1961)MATHGoogle Scholar
  67. 67.
    Heiselberg, H., Pethick, C.J., Smith, H., Viverit, L.: Phys. Rev. Lett. 85, 2418 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    Furnstahl, R.J.: J. Phys. G 31, S1357 (2005) [arXiv:nucl-th/0412093]Google Scholar
  69. 69.
    Entem, D.R., Machleidt, R.: Phys. Rev. C 68, 041001(R) (2003)Google Scholar
  70. 70.
    Epelbaum, E., Glöckle, W., Meißner, U.G.: Nucl. Phys. A 747, 362 (2005)ADSCrossRefGoogle Scholar
  71. 71.
    Bogner, S.K., Furnstahl, R.J., Perry, R.J.: Phys. Rev. C 75, 061001 (2007) [arXiv:nucl-th/0611045]Google Scholar
  72. 72.
    Bogner, S.K., Furnstahl, R.J., Perry, R.J., Schwenk, A.: Phys. Lett. B 649, 488 (2007) [arXiv:nucl-th/0701013]Google Scholar
  73. 73.
    Coraggio, L., Covello, A., Gargano, A., Itaco, N., Entem, D.R., Kuo, T.T.S., Machleidt, R.: Phys. Rev. C 75, 024311 (2007) [arXiv:nucl-th/0701065]Google Scholar
  74. 74.
    Negele, J.W., Vautherin, D.: Phys. Rev. C 5, 1472 (1972)ADSCrossRefGoogle Scholar
  75. 75.
    Negele, J.W., Vautherin, D.: Phys. Rev. C 11, 1031 (1975)ADSCrossRefGoogle Scholar
  76. 76.
    Bogner, S.K., Furnstahl, R.J., Platter, L.: Eur. Phys. J. A 39, 219 (2009)Google Scholar
  77. 77.
    Kaiser, N., Fritsch, S., Weise, W.: Nucl. Phys. A 724, 47 (2003)ADSCrossRefGoogle Scholar
  78. 78.
    Kaiser, N.: Phys. Rev. C 68, 014323 (2003)ADSCrossRefGoogle Scholar
  79. 79.
    Kaiser, N., et al.: Nucl. Phys. A 750, 259 (2005)ADSCrossRefGoogle Scholar
  80. 80.
    Rotivale, V., Bogner, S.K., Duguet, T., Furnstahl, R.J.: in preparationGoogle Scholar
  81. 81.
    Engel, J.: Phys. Rev. C 75, 014306 (2007) [arXiv:nucl-th/0610043]Google Scholar
  82. 82.
    Serot, B.D., Walecka, J.D.: Adv. Nucl. Phys. 16, 1 (1986)Google Scholar
  83. 83.
    Ring, P.: Prog. Part. Nucl. Phys. 37, 193 (1996), and references thereinGoogle Scholar
  84. 84.
    Serot, B.D., Walecka, J.D.: Int. J. Mod. Phys. E 6, 515 (1997), and references thereinGoogle Scholar
  85. 85.
    Gasser, J., Sainio, M.E., Svarc, A.: Nucl. Phys. B 307, 779 (1988)ADSCrossRefGoogle Scholar
  86. 86.
    Jenkins, E., Manohar, A.V.: Phys. Lett. B 255, 558 (1991); Bernard, V., Kaiser, N., Meissner, U.-G.: Nucl. Phys. B 388, 315 (1992)Google Scholar
  87. 87.
    Tang, H.-B.: arXiv:hep-ph/9607436Google Scholar
  88. 88.
    Ellis, P.J., Tang, H.-B.: Phys. Rev. C 57, 643 (1998)CrossRefGoogle Scholar
  89. 89.
    Becher, T., Leutwyler, H.: Eur. Phys. J. C 9, 643 (1999)ADSGoogle Scholar
  90. 90.
    Fuchs, T., et al.: Phys. Rev. D 68, 056005 (2003) [arXiv:hep-ph/0302117]Google Scholar
  91. 91.
    Lehmann, D., Prezeau, G.: Phys. Rev. D 65, 016001 (2002)ADSCrossRefGoogle Scholar
  92. 92.
    Schindler, M.R., Gegelia, J., Scherer, S.: Phys. Lett. B 586, 258 (2004) [arXiv:hep-ph/0309005]Google Scholar
  93. 93.
    Kaplan, D.B., Savage, M.J., Wise, M.B.: Phys. Lett. B 424, 390 (1998); Nucl. Phys. B 534, 329 (1998)Google Scholar
  94. 94.
    Chang, S.Y. et al.: Nucl. Phys. A 746, 215 (2004) [arXiv:nucl-th/0401016]Google Scholar
  95. 95.
    Astrakharchik, G.E., Boronat, J., Casulleras, J.: S. Giorgini Phys. Rev. Lett. 93, 200404 (2004)ADSCrossRefGoogle Scholar
  96. 96.
    Papenbrock, T.: Phys. Rev. A 72, 041603 (2005) [arXiv:cond-mat/0507183]Google Scholar
  97. 97.
    Bhattacharyya, A., Papenbrock, T.: Phys. Rev. A 74, 041602 (2006) [arXiv:nucl-th/0602050]Google Scholar
  98. 98.
    Papenbrock, T., Bhattacharyya, A.: Phys. Rev. C 75, 014304 (2007) [arXiv:nucl-th/0609084]Google Scholar
  99. 99.
    Son, D.T., Wingate, M.: Annals Phys. 321, 197 (2006) [arXiv:cond-mat/0509786]Google Scholar
  100. 100.
    Son, D.T.: Phys. Rev. Lett. 98, 020604 (2007) [arXiv:cond-mat/0511721]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsOhio State UniversityColumbusUSA

Personalised recommendations