Complex Hamiltonian Dynamics pp 221-238 | Cite as
Conclusions, Open Problems and Future Outlook
Abstract
The final Chapter first summarizes and discusses the main conclusions described in the book. We then list a number of open problems, which we feel should be further pursued in continuation of what we have presented in earlier Chapters. We start with some recent results that extend the mathematical theory of integrability from the viewpoint of singularity analysis and continue with some directions that further develop the topics of nonlinear normal modes, localization, diffusion and the complex statistical properties of nonlinear lattices. Finally, regarding the future outlook of research in Hamiltonian dynamics, we briefly review three topics of great current interest that were not treated in the book, but are extremely important in view of their far-reaching experimental applications: (1) anomalous heat conduction and the discovery of mechanisms that control heat flow based on the dynamics of Hamiltonian lattices, (2) soliton dynamics in nonlinear photonic structures and (3) kinetic theory of Hamiltonian systems with applications to plasma physics.
Keywords
Hamiltonian System Wave Packet Hamiltonian Dynamic Chaotic Orbit Nonlinear Normal ModeReferences
- 1.F. Abdullaev, O. Bang, M.P. Sørensen (eds.), Nonlinearity and Disorder: Theory and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 45 (Springer, Heidelberg, 2002)Google Scholar
- 2.M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, vol. 149 (Cambridge University Press, Cambridge, 1991)Google Scholar
- 3.M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)MATHCrossRefGoogle Scholar
- 4.M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004)MATHGoogle Scholar
- 5.E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979)ADSCrossRefGoogle Scholar
- 6.M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)Google Scholar
- 7.O. Afsar, U. Tirnakli, Probability densities for the sums of iterates of the sine-circle map in the vicinity of the quasiperiodic edge of chaos. Phys. Rev. E 82, 046210 (2010)ADSCrossRefGoogle Scholar
- 8.Y. Aizawa, Symbolic dynamics approach to the two-dimensional chaos in area-preserving maps. Prog. Theor. Phys. 71, 1419–1421 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
- 9.D. Alonso, R. Artuso, G. Casati, I. Guarneri, Heat conductivity and dynamical instability. Phys. Rev. Lett. 82, 1859–1862 (1999)ADSCrossRefGoogle Scholar
- 10.P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)ADSCrossRefGoogle Scholar
- 11.D.V. Anosov, Geodesic flows on a compact Riemann manifold of negative curvature. Trudy Mat. Inst. Steklov 90, 3–210 (1967). English translation, Proc. Steklov Math. Inst. 90, 3–210 (1967)Google Scholar
- 12.D.V. Anosov, Y.G. Sinai, Some smooth Ergodic systems. Russ. Math. Surv. 22(5), 103–167 (1967)MathSciNetCrossRefGoogle Scholar
- 13.Ch. Antonopoulos, T. Bountis, Stability of simple periodic orbits and chaos in a Fermi-Pasta-Ulam lattice. Phys. Rev. E 73, 056206 (2006)MathSciNetADSCrossRefGoogle Scholar
- 14.Ch. Antonopoulos, T. Bountis, Detecting order and chaos by the linear dependence index (LDI) method. ROMAI J. 2, 1–13 (2006)MathSciNetMATHGoogle Scholar
- 15.Ch. Antonopoulos, H. Christodoulidi, Weak chaos detection in the Fermi-Pasta-Ulam-α system using q-Gaussian statistics. Int. J. Bifurc. Chaos 21, 2285–2296 (2011)CrossRefGoogle Scholar
- 16.Ch. Antonopoulos, T.C. Bountis, Ch. Skokos, Chaotic dynamics of N-degree of freedom Hamiltonian systems. Int. J. Bifurc. Chaos 16, 1777–1793 (2006)MathSciNetMATHCrossRefGoogle Scholar
- 17.Ch. Antonopoulos, V. Basios, T. Bountis, Weak chaos and the “melting transition” in a confined microplasma system. Phys. Rev. E. 81, 016211 (2010)ADSCrossRefGoogle Scholar
- 18.Ch. Antonopoulos, T. Bountis, V. Basios, Quasi-stationary chaotic states of multidimensional Hamiltonian systems. Phys. A 390, 3290–3307 (2011)MathSciNetCrossRefGoogle Scholar
- 19.V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1989)Google Scholar
- 20.V.I. Arnold, A. Avez, Problèmes Ergodiques de la Mécanique Classique (Gauthier-Villars, Paris, 1967 / Benjamin, New York, 1968)Google Scholar
- 21.S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization. Phys. D 103, 201–250 (1997)MathSciNetMATHCrossRefGoogle Scholar
- 22.F. Baldovin, E. Brigatti, C. Tsallis, Quasi-stationary states in low-dimensional Hamiltonian systems. Phys. Lett. A 320, 254–260 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
- 23.F. Baldovin, L.G. Moyano, A.P. Majtey, A. Robledo, C. Tsallis, Ubiquity of metastable-to-stable crossover in weakly chaotic dynamical systems. Phys. A 340, 205–218 (2004)MathSciNetCrossRefGoogle Scholar
- 24.D. Bambusi, A. Ponno, On metastability in FPU. Commun. Math. Phys. 264, 539–561 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
- 25.D. Bambusi, A. Ponno, Resonance, Metastability and Blow Up in FPU. Lecture Notes in Physics, vol. 728 (Springer, New York/Berlin, 2008), pp. 191–205Google Scholar
- 26.R. Barrio, Sensitivity tools vs. Poincaré sections. Chaos Soliton Fract. 25, 711–726 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
- 27.R. Barrio, Painting chaos: a gallery of sensitivity plots of classical problems. Int. J. Bifurc. Chaos 16, 2777–2798 (2006)MathSciNetMATHCrossRefGoogle Scholar
- 28.R. Barrio, W. Borczyk, S. Breiter, Spurious structures in chaos indicators maps. Chaos Soliton Fract. 40, 1697–1714 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
- 29.C. Beck, Brownian motion from deterministic dynamics. Phys. A 169, 324–336 (1990)MathSciNetCrossRefGoogle Scholar
- 30.G. Benettin, A. Ponno, Time-scales to equipartition in the Fermi-Pasta-Ulam problem: finite size effects and thermodynamic limit. J. Stat. Phys. 144, 793–812 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
- 31.G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica 15, 9–20 (1980)Google Scholar
- 32.G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 2: Numerical application. Meccanica 15, 21–30 (1980)Google Scholar
- 33.G. Benettin, L. Galgani, A. Giorgilli, A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems. Celest. Mech. 37, 1–25 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
- 34.G. Benettin, A. Carati, L. Galgani, A. Giorgilli, The Fermi-Pasta-Ulam problem and the metastability perspective. Lecture Notes in Physics, vol. 728 (Springer, New York/Berlin, 2008), pp. 151–189Google Scholar
- 35.G. Benettin, R. Livi, A. Ponno, The Fermi-Pasta-Ulam problem: scaling laws vs. initial conditions. J. Stat. Phys. 135, 873–893 (2009)Google Scholar
- 36.D. Benisti, D.F. Escande, Nonstandard diffusion properties of the standard map. Phys. Rev. Lett. 80, 4871–4874 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
- 37.L. Berchialla, A. Giorgilli, S. Paleari, Exponentially long times to equipartition in the thermodynamic limit. Phys. Lett. A, 321, 167–172 (2004)ADSMATHCrossRefGoogle Scholar
- 38.L. Berchialla, L. Galgani, A. Giorgilli, Localization of energy in FPU chains. Discret. Contin. Dyn. Syst. 11, 855–866 (2004)MathSciNetMATHCrossRefGoogle Scholar
- 39.J.M. Bergamin, Numerical approximation of breathers in lattices with nearest-neighbor interactions, Phys. Rev. E 67, 026703 (2003)MathSciNetADSCrossRefGoogle Scholar
- 40.J.M. Bergamin, Localization in nonlinear lattices and homoclinic dynamics. Ph.D. Thesis, University of Patras, 2003Google Scholar
- 41.J.M. Bergamin, T. Bountis, C. Jung, A method for locating symmetric homoclinic orbits using symbolic dynamics. J. Phys. A-Math. Gen. 33, 8059–8070 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
- 42.J.M. Bergamin, T. Bountis, M.N. Vrahatis, Homoclinic orbits of invertible maps. Nonlinearity 15, 1603–1619 (2002)MathSciNetMATHGoogle Scholar
- 43.G.P. Berman, F.M. Izrailev, The Fermi-Pasta-Ulam problem: fifty years of progress. Chaos 15, 015104 (2005)MathSciNetADSCrossRefGoogle Scholar
- 44.P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968)MATHGoogle Scholar
- 45.J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Direct observation of Anderson localization of matter-waves in a controlled disorder. Nature 453, 891–894 (2008)ADSCrossRefGoogle Scholar
- 46.G. Birkhoff, G.-C. Rota, Ordinary Differential Equations (Wiley, New York, 1978)MATHGoogle Scholar
- 47.J.D. Bodyfelt, T.V. Laptyeva, Ch. Skokos, D.O. Krimer, S. Flach, Nonlinear waves in disordered chains: probing the limits of chaos and spreading. Phys. Rev. E 84, 016205 (2011)ADSCrossRefGoogle Scholar
- 48.J.D. Bodyfelt, T.V. Laptyeva, G. Gligoric, D.O. Krimer, Ch. Skokos, S. Flach, Wave interactions in localizing media – a coin with many faces. Int. J. Bifurc. Chaos 21, 2107–2124 (2011)MATHCrossRefGoogle Scholar
- 49.J. Boreux, T. Carletti, Ch. Skokos, M. Vittot, Hamiltonian control used to improve the beam stability in particle accelerator models. Commun. Nonlinear Sci. Numer. Simul. (2011) 17, 1725–1738 (2012)Google Scholar
- 50.J. Boreux, T. Carletti, Ch. Skokos, Y. Papaphilippou, M. Vittot, Efficient control of accelerator maps. Int. J. Bifurc. Chaos (2012, In Press) E-print arXiv:1103.5631Google Scholar
- 51.T. Bountis, Investigating non-integrability and Chaos in complex time. Phys. D 86, 256–267 (1995)MathSciNetMATHCrossRefGoogle Scholar
- 52.T. Bountis, Stability of motion: From Lyapunov to the dynamics N-degree of freedom Hamiltonian systems. Nonlinear Phenomena and Complex Systems 9, 209–239 (2006)MathSciNetGoogle Scholar
- 53.T. Bountis, J.M. Bergamin, Discrete Breathers in Nonlinear Lattices: A Review and Recent Results. Lecture Notes in Physics, vol. 626 (Springer, New York/Berlin, 2003)Google Scholar
- 54.T. Bountis, M. Kollmann, Diffusion rates in a 4-dimensional mapping model of accelerator dynamics. Phys. D 71, 122–131 (1994)MATHCrossRefGoogle Scholar
- 55.T. Bountis, K.E. Papadakis, The stability of vertical motion in the N-body circular Sitnikov problem. Celest. Mech. Dyn. Astron. 104, 205–225 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
- 56.T. Bountis, H. Segur, in Logarithmic Singularities and Chaotic Behavior in Hamiltonian Systems, ed. by M. Tabor, Y. Treves. A.I.P. Conference Proceedings, vol. 88, 279–292 (A.I.P., New York, 1982)Google Scholar
- 57.T. Bountis, Ch. Skokos, Application of the SALI chaos detection method to accelerator mappings. Nucl. Instrum. Methods A 561, 173–179 (2006)ADSCrossRefGoogle Scholar
- 58.T. Bountis, Ch. Skokos, Space charges can significantly affect the dynamics of accelerator maps. Phys. Lett. A 358, 126–133 (2006)ADSMATHCrossRefGoogle Scholar
- 59.T. Bountis, S. Tompaidis, Strong and weak instabilities in a 4-D mapping model of accelerator dynamics, in Nonlinear Problems in Future Particle Accelerators, ed. by W. Scandale, G. Turchetti (World Scientific, Singapore, 1991), pp. 112–127Google Scholar
- 60.T. Bountis, H. Segur, F. Vivaldi, Integrable Hamiltonian systems and the Painlevé property. Phys. Rev. A 25, 1257–1264 (1982)MathSciNetADSCrossRefGoogle Scholar
- 61.T. Bountis, H.W. Capel, M. Kollmann, J.C. Ross, J.M. Bergamin, J.P. van der Weele, Multibreathers and homoclinic orbits in one-dimensional nonlinear lattices. Phys. Lett. A 268, 50–60 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
- 62.T. Bountis, J.M. Bergamin, V. Basios, Stabilization of discrete breathers using continuous feedback control. Phys. Lett. A 295, 115–120 (2002)ADSCrossRefGoogle Scholar
- 63.T. Bountis, T. Manos, H. Christodoulidi, Application of the GALI method to localization dynamics in nonlinear systems. J. Comput. Appl. Math. 227, 17–26 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
- 64.T. Bountis, G. Chechin, V. Sakhnenko, Discrete symmetries and stability in Hamiltonian dynamics. Int. J. Bifurc. Chaos 21, 1539–1582 (2011)MathSciNetMATHCrossRefGoogle Scholar
- 65.V.A. Brazhnyi, V.V. Konotop, Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B 18, 627–651 (2004)ADSCrossRefGoogle Scholar
- 66.N. Budinsky, T. Bountis, Stability of nonlinear modes and chaotic properties of 1D Fermi-Pasta-Ulam lattices. Phys. D 8, 445–452 (1983)MathSciNetMATHCrossRefGoogle Scholar
- 67.A. Cafarella, M. Leo, R.A. Leo, Numerical analysis of the one-mode solutions in the Fermi-Pasta-Ulam system. Phys. Rev. E 69, 046604 (2004)ADSCrossRefGoogle Scholar
- 68.P. Calabrese, A. Gambassi, Slow dynamics in critical ferromagnetic vector models relaxing from a magnetized initial state. J. Stat. Mech.-Theory Exp. 2007, P01001 (2007)CrossRefGoogle Scholar
- 69.F. Calogero, D. Gomez-Ullate, P.M. Santini, M. Sommacal, On the transition from regular to irregular motions, explained as travel on Riemann surfaces. J. Phys. A 38, 8873–8896 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
- 70.F. Calogero, D. Gomez-Ullate, P.M. Santini, M. Sommacal, Towards a theory of chaos explained as travel on Riemann surfaces. J. Phys. A 42, 015205 (2009)MathSciNetADSCrossRefGoogle Scholar
- 71.D.K. Campbell, P. Rosenau, G.M. Zaslavsky (eds.), The Fermi-Pasta-Ulam problem: the first 50 Years. Chaos, Focus Issue 15, 015101 (2005)Google Scholar
- 72.R. Capuzzo-Dolcetta, L. Leccese, D. Merritt, A. Vicari, Self-consistent models of cuspy triaxial galaxies with dark matter haloes. Astrophys. J. 666, 165–180 (2007)ADSCrossRefGoogle Scholar
- 73.J.R. Cary, D.F. Escande, A.D. Verga, Nonquasilinear diffusion far from the chaotic threshold. Phys. Rev. Lett. 65, 3132–3135 (1990)ADSCrossRefGoogle Scholar
- 74.G. Casati, B. Li, Heat conduction in one dimensional systems: Fourier law, chaos, and heat control, in Nonlinear Dynamics and Fundamental Interactions. NATO Science Series, Springer, New York/Berlin, vol. 213, Part 1, 1–16 (2006)Google Scholar
- 75.G. Casati, T. Prosen, Mixing property of triangular billiards. Phys. Rev. Lett. 83, 4729–4732 (1999)ADSCrossRefGoogle Scholar
- 76.G. Casati, J. Ford, F. Vivaldi, W.M. Visscher, One-dimensional classical many-body system having a normal thermal conductivity. Phys. Rev. Lett. 52, 1861–1864 (1984)ADSCrossRefGoogle Scholar
- 77.A. Celikoglu, U. Tirnakli, S.M. Duarte Queirós, Analysis of return distributions in the coherent noise model. Phys. Rev. E 82, 021124 (2010)ADSCrossRefGoogle Scholar
- 78.J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser, J.-C. Garreau, Experimental observation of the Anderson metal-insulator transition with atomic matter waves. Phys. Rev. Lett. 101, 255702 (2008)ADSCrossRefGoogle Scholar
- 79.C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Solid-state thermal rectifier. Science 314, 1121 (2006)Google Scholar
- 80.G.M. Chechin, Computers and group-theoretical methods for studying structural phase transition. Comput. Math. Appl. 17, 255–278 (1989)MathSciNetMATHCrossRefGoogle Scholar
- 81.G.M. Chechin, V.P. Sakhnenko, Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results. Phys. D 117, 43–76 (1998)MathSciNetMATHGoogle Scholar
- 82.G.M. Chechin, K.G. Zhukov, Stability analysis of dynamical regimes in nonlinear systems with discrete symmetries. Phys. Rev. E 73, 036216 (2006)MathSciNetADSCrossRefGoogle Scholar
- 83.G.M. Chechin, T.I. Ivanova, V.P. Sakhnenko, Complete order parameter condensate of low-symmetry phases upon structural phase transitions. Phys. Status Solidi B 152, 431–446 (1989)ADSCrossRefGoogle Scholar
- 84.G.M. Chechin, E.A. Ipatova, V.P. Sakhnenko, Peculiarities of the low-symmetry phase structure near the phase-transition point. Acta Crystallogr. A 49, 824–831 (1993)CrossRefGoogle Scholar
- 85.G.M. Chechin, N.V. Novikova, A.A. Abramenko, Bushes of vibrational modes for Fermi-Pasta-Ulam chains. Phys. D 166, 208–238 (2002)MathSciNetMATHCrossRefGoogle Scholar
- 86.G.M. Chechin, A.V. Gnezdilov, M.Yu. Zekhtser, Existence and stability of bushes of vibrational modes for octahedral mechanical systems with Lennard-Jones potential. Int. J. Nonlinear Mech. 38, 1451–1472 (2003) *********Google Scholar
- 87.G.M. Chechin, D.S. Ryabov, K.G. Zhukov, Stability of low-dimensional bushes of vibrational modes in the Fermi-Pasta-Ulam chains. Phys. D 203, 121–166 (2005)MathSciNetMATHCrossRefGoogle Scholar
- 88.B.V. Chirikov, A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)MathSciNetADSCrossRefGoogle Scholar
- 89.B.V. Chirikov, D.L. Shepelyansky, Correlation properties of dynamical chaos in Hamiltonian systems. Phys. D 13, 395–400 (1984)MathSciNetMATHCrossRefGoogle Scholar
- 90.S.-N. Chow, M. Yamashita, Geometry of the Melnikov vector, in Nonlinear Equations in Applied Sciences, ed. by W.F. Ames, C. Rogers (Academic Press, San Diego, 1991), pp. 79–148Google Scholar
- 91.D.N. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behavious in linear and nonlinear waveguide lattices. Nature 424, 817 (2003)ADSCrossRefGoogle Scholar
- 92.H. Christodoulidi, Dynamics on low-dimensional tori and chaos in Hamiltonian systems. Ph.D. Thesis, University of Patras, 2010Google Scholar
- 93.H. Christodoulidi, T. Bountis, Low-dimensional quasiperiodic motion in Hamiltonian systems. ROMAI J. 2, 37–44 (2006)MathSciNetMATHGoogle Scholar
- 94.H. Christodoulidi, C. Efthymiopoulos, T. Bountis, Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences. Phys. Rev. E 81, 016210 (2010)ADSCrossRefGoogle Scholar
- 95.P.M. Cincotta, C. Simó, Simple tools to study global dynamics in non-axisymmetric galactic potentials-I. Astron. Astrophys. Suppl. 147, 205–228 (2000)ADSCrossRefGoogle Scholar
- 96.P.M. Cincotta, C.M. Giordano, C. Simó, Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Phys. D 182, 151–178 (2003)MathSciNetMATHCrossRefGoogle Scholar
- 97.E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955)MATHGoogle Scholar
- 98.R.M. Conte, M. Musette, The Painlevé Handbook (Springer, Heidelberg, 2008)MATHGoogle Scholar
- 99.G. Contopoulos, Order and Chaos in Dynamical Astronomy (Springer, Heidelberg, 2002)MATHGoogle Scholar
- 100.G. Contopoulos, B. Barbanis, Lyapunov characteristic numbers and the structure of phase-space. Astron. Astrophys. 222, 329–343 (1989)MathSciNetADSGoogle Scholar
- 101.G. Contopoulos, P. Magnenat, Simple three-dimensional periodic orbits in a galactic-type potential. Celest. Mech. 37, 387–414 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
- 102.G. Contopoulos, N. Voglis, Spectra of stretching numbers and helicity angles in dynamical systems. Celest. Mech. Dyn. Astr. 64, 1–20 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
- 103.G. Contopoulos, N. Voglis, A fast method for distinguishing between ordered and chaotic orbits. Astron. Astrophys. 317, 73–81 (1997)ADSGoogle Scholar
- 104.G. Contopoulos, L. Galgani, A. Giorgilli, On the number of isolating integrals in Hamiltonian systems. Phys. Rev. A 18, 1183–1189 (1978)ADSCrossRefGoogle Scholar
- 105.T. Cretegny, T. Dauxois, S. Ruffo, A. Torcini, Localization and equipartition of energy in the beta-FPU chain: chaotic breathers. Phys. D 121, 109–126 (1998)CrossRefGoogle Scholar
- 106.F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)ADSCrossRefGoogle Scholar
- 107.H.T. Davis, Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962)MATHGoogle Scholar
- 108.T. Dauxois, Non-Gaussian distributions under scrutiny. J. Stat. Mech.-Theory Exp. 2007, N08001 (2007)CrossRefGoogle Scholar
- 109.J. De Luca, A.J. Lichtenberg, Transitions and time scales to equipartition in oscillator chains: low-frequency initial conditions. Phys. Rev. E 66, 026206 (2002)MathSciNetADSCrossRefGoogle Scholar
- 110.J. De Luca, A.J. Lichtenberg, M.A. Lieberman, Time scale to ergodicity in the Fermi-Pasta-Ulam system. Chaos 5, 283–297 (1995)ADSCrossRefGoogle Scholar
- 111.J. De Luca, A.J. Lichtenberg, S. Ruffo, Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain. Phys. Rev. E 51, 2877–2885 (1995)ADSCrossRefGoogle Scholar
- 112.J. De Luca, A.J. Lichtenberg, S. Ruffo, Finite times to equipartition in the thermodynamic limit. Phys. Rev. E 60, 3781–3786 (1999)ADSCrossRefGoogle Scholar
- 113.L. Drossos, T. Bountis, Evidence of natural boundary and nonintegrability of the mixmaster universe model. J. Nonlinear Sci. 7, 1–11 (1997)MathSciNetCrossRefGoogle Scholar
- 114.W.E. Drummond, D. Pines, Nonlinear stability of plasma oscillations. Nucl. Fusion Suppl. 3, 1049–1057 (1962)Google Scholar
- 115.S.M. Duarte Queirós, The role of ergodicity and mixing in the central limit theorem for Casati-Prosen triangle map variables. Phys. Lett. A 373, 1514–1518 (2009)MATHCrossRefGoogle Scholar
- 116.G. Duffing, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung (Vieweg & Sohn, Braunschweig, 1918)MATHGoogle Scholar
- 117.J.-P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)MathSciNetADSCrossRefGoogle Scholar
- 118.J.T. Edwards, D.J. Thouless, Numerical studies of localization in disordered systems. J. Phys. C Solid 5, 807–820 (1972)ADSCrossRefGoogle Scholar
- 119.N.K. Efremidis, D.N. Christodoulides, Lattice solitons in Bose-Einstein condensates. Phys. Rev. A 67, 063608 (2003)ADSCrossRefGoogle Scholar
- 120.L.H. Eliasson, Absolutely convergent series expansions for quasi periodic motions. Math. Phys. Electron. J. 2, 4 (1996)MathSciNetGoogle Scholar
- 121.E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems. Los Alamos Sci. Lab. Rep. No. LA-1940 (1955), in Nonlinear Wave Motion, ed. by A.C. Newell. Lectures in Applied Mathematics, vol. 15 (Amer. Math. Soc., Providence, 1974), pp. 143–155Google Scholar
- 122.S. Flach, Conditions on the existence of localized excitations in nonlinear discrete systems. Phys. Rev. E 50, 3134–3142 (1994)MathSciNetADSCrossRefGoogle Scholar
- 123.S. Flach, Obtaining breathers in nonlinear Hamiltonian lattices. Phys. Rev. E 51, 3579–3587 (1995)ADSCrossRefGoogle Scholar
- 124.S. Flach, Spreading of waves in nonlinear disordered media. Chem. Phys. 375, 548–556 (2010)ADSCrossRefGoogle Scholar
- 125.S. Flach, A.V. Gorbach, Discrete breathers – Advances in theory and applications. Phys. Rep. 467, 1–116 (2008)ADSCrossRefGoogle Scholar
- 126.S. Flach, A. Ponno, The Fermi-Pasta-Ulam problem: periodic orbits, normal forms and resonance overlap criteria. Phys. D 237, 908–917 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 127.S. Flach, C. Willis, Discrete breathers. Phys. Rep. 295, 181–264 (1998)MathSciNetGoogle Scholar
- 128.S. Flach, M.V. Ivanchenko, O.I. Kanakov, q-Breathers and the Fermi-Pasta-Ulam problem. Phys. Rev. Lett. 95, 064102 (2005)ADSCrossRefGoogle Scholar
- 129.S. Flach, M.V. Ivanchenko, O.I. Kanakov, q-breathers in Fermi-Pasta-Ulam chains: existence, localization, and stability. Phys. Rev. E 73, 036618 (2006)MathSciNetADSCrossRefGoogle Scholar
- 130.S. Flach, O.I. Kanakov, M.V. Ivanchenko, K. Mishagin, q-breathers in FPU-lattices – scaling and properties for large systems. Int. J. Mod. Phys. B 21, 3925–3932 (2007)ADSCrossRefGoogle Scholar
- 131.S. Flach, D.O. Krimer, Ch. Skokos, Universal spreading of wavepackets in disordered nonlinear systems. Phys. Rev. Lett. 102, 024101 (2009)ADSCrossRefGoogle Scholar
- 132.A.S. Fokas, T. Bountis, Order and the ubiquitous occurrence of Chaos. Phys. A 228, 236–244 (1996)MathSciNetCrossRefGoogle Scholar
- 133.J. Ford, The Fermi-Pasta-Ulam problem: paradox turns discovery. Phys. Rep. 213, 271–310 (1992)MathSciNetADSCrossRefGoogle Scholar
- 134.F. Freistetter, Fractal dimensions as chaos indicators. Celest. Mech. Dyn. Astron. 78, 211–225 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
- 135.C. Froeschlé, E. Lega, On the structure of symplectic mappings. The fast Lyapunov indicator: A very sensitive tool. Celest. Mech. Dyn. Astron. 78, 167–195 (2000)ADSMATHGoogle Scholar
- 136.C. Froeschlé, Ch. Froeschlé, E. Lohinger, Generalized Lyapunov characteristic indicators and corresponding Kolmogorov like entropy of the standard mapping. Celest. Mech. Dyn. Astron. 56, 307–314 (1993)ADSMATHCrossRefGoogle Scholar
- 137.C. Froeschlé, E. Lega, R. Gonczi, Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62 (1997)ADSMATHCrossRefGoogle Scholar
- 138.C. Froeschlé, R. Gonczi, E. Lega, The fast Lyapunov indicator: a simple tool to detect weak chaos. Application to the structure of the main asteroidal belt. Planet. Space Sci. 45, 881–886 (1997)Google Scholar
- 139.F. Fucito, F. Marchesoni, E. Marinari, G. Parisi, L. Peliti, S. Ruffo, A. Vulpiani, Approach to equilibrium in a chain of nonlinear oscillators. J. Phys.-Paris 43, 707–713 (1982)MathSciNetCrossRefGoogle Scholar
- 140.L. Galgani, A. Scotti, Planck-like distributions in classical nonlinear mechanics. Phys. Rev. Lett. 28, 1173–1176 (1972)ADSCrossRefGoogle Scholar
- 141.Z. Galias, Rigorous investigation of the Ikeda map by means of interval arithmetic. Nonlinearity 15, 1759–1779 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
- 142.G. Gallavotti, Twistless KAM tori. Commun. Math. Phys. 164, 145–156 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
- 143.G. Gallavotti, Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems: a review. Rev. Math. Phys. 6, 343–411 (1994)MathSciNetMATHCrossRefGoogle Scholar
- 144.I. García-Mata, D.L. Shepelyansky, Delocalization induced by nonlinearity in systems with disorder. Phys. Rev. E 79, 026205 (2009)ADSCrossRefGoogle Scholar
- 145.P. Gaspard, Lyapunov exponent of ion motion in microplasmas. Phys. Rev. E 68, 056209 (2003)ADSCrossRefGoogle Scholar
- 146.E. Gerlach, Ch. Skokos, Comparing the efficiency of numerical techniques for the integration of variational equations. Discr. Cont. Dyn. Sys.-Supp. September, 475–484 (2011)Google Scholar
- 147.E. Gerlach, S. Eggl, Ch. Skokos, Efficient integration of the variational equations of multi-dimensional Hamiltonian systems: application to the Fermi-Pasta-Ulam lattice. Int. J. Bifurc. Chaos (2012, In Press) E-print arXiv:1104.3127Google Scholar
- 148.A. Giorgilli, U. Locatelli, Kolmogorov theorem and classical perturbation theory. Z. Angew. Math. Phys. 48, 220–261 (1997)MathSciNetMATHCrossRefGoogle Scholar
- 149.A. Giorgilli, U. Locatelli, A classical self-contained proof of Kolmogorov’s theorem on invariant tori, in Hamiltonian Systems of Three or More Degrees of Freedom, ed. by C. Simó. NATO Advanced Study Institute, vol. 533 (Kluwer, Dordrecht, 1999), pp. 72–89Google Scholar
- 150.A. Giorgilli, D. Muraro, Exponentially stable manifolds in the neighbourhood of elliptic equilibria. Boll. Unione Mate. Ital. B 9, 1–20 (2006)MathSciNetMATHGoogle Scholar
- 151.M.L. Glasser, V.G. Papageorgiou, T.C. Bountis, Mel’nikov’s function for two-dimensional mappings. SIAM J. Appl. Math. 49, 692–703 (1989)MathSciNetMATHCrossRefGoogle Scholar
- 152.A. Goriely, Integrability and Nonintegrability of Dynamical Systems (World Scientific, Singapore, 2001)MATHGoogle Scholar
- 153.G.A. Gottwald, I. Melbourne, A new test for chaos in deterministic systems. Proc. R. Soc. Lond. A Math. 460, 603–611 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
- 154.G.A. Gottwald, I. Melbourne, Testing for chaos in deterministic systems with noise. Phys. D 212, 100–110 (2005)MathSciNetMATHCrossRefGoogle Scholar
- 155.E. Goursat, Cours d’ Analyse Mathématique vol. 2 (Gauthier-Villars, Paris, 1905)Google Scholar
- 156.B. Grammaticos, B. Dorizzi, R. Padjen, Painlevé property and integrals of motion for the Hénon-Heiles system. Phys. Lett. A 89, 111–113 (1982)MathSciNetADSCrossRefGoogle Scholar
- 157.P.E. Greenwood, M.S. Nikulin, A Guide to Chi-Squared Testing, (Wiley, New York, 1996)Google Scholar
- 158.P. Grassberger, Proposed central limit behavior in deterministic dynamical systems. Phys. Rev. E 79, 057201 (2009)ADSCrossRefGoogle Scholar
- 159.W. Greub, Multilinear Algebra, 2nd edn. (Springer, Heidelberg, 1978)MATHCrossRefGoogle Scholar
- 160.J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)MATHGoogle Scholar
- 161.M.G. Hahn, X. Jiang, S. Umarov, On q-Gaussians and exchangeability. J. Phys. A-Math. Theor. 43, 165208 (2010)MathSciNetADSCrossRefGoogle Scholar
- 162.E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Comput. Math., vol. 31 (Springer, Berlin, 2002)Google Scholar
- 163.P. Hemmer, Dynamic and stochastic type of motion by the linear chain. Det Physiske Seminar i Trondheim 2, 66 (1959)Google Scholar
- 164.M. Hénon, C. Heiles, The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)ADSCrossRefGoogle Scholar
- 165.R.C. Hilborn, Chaos and Nonlinear Dynamics (Oxford University Press, New York, 1994)MATHGoogle Scholar
- 166.H.J. Hilhorst, Note on a q-modified central limit theorem. J. Stat. Mech.-Theory Exp. 2010, P10023 (2010)MathSciNetCrossRefGoogle Scholar
- 167.H.J. Hilhorst, G. Schehr, A note on q-Gaussians and non-Gaussians in statistical mechanics. J. Stat. Mech.-Theory Exp. 2007, P06003 (2007)MathSciNetCrossRefGoogle Scholar
- 168.T.L. Hill Thermodynamics of Small Systems (Dover, New York, 1994)Google Scholar
- 169.E. Hille, Lectures on Ordinary Differential Equations (Addison-Wesley, Reading, 1969)MATHGoogle Scholar
- 170.M.W. Hirsch, S. Smale, R.L. Devaney, Differential Equations, Dynamical Systems and an Introduction to Chaos (Elsevier, New York, 2004)MATHGoogle Scholar
- 171.J.E. Howard, Discrete virial theorem. Celest. Mech. Dyn. Astron. 92, 219–241 (2005)ADSMATHCrossRefGoogle Scholar
- 172.B. Hu, B. Li, H. Zhao, Heat conduction in one-dimensional chains. Phys. Rev. E 57, 2992 (1998)ADSCrossRefGoogle Scholar
- 173.H. Hu, A. Strybulevych, J. Page, S. Skipetrov, B. van Tiggelen, Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945–948 (2008)CrossRefGoogle Scholar
- 174.J.H. Hubbard, B.B. Hubbard, Vector Calculus, Linear Algebra and Differential Forms: A Unified Approach (Prentice Hall, Upper Saddle River, 1999)MATHGoogle Scholar
- 175.M.C. Irwin, Smooth Dynamical Systems (Academic, New York, 1980)MATHGoogle Scholar
- 176.N. Jacobson, Lectures in Abstract Algebra, vol. II (van Nostrand, Princeton, 1951)Google Scholar
- 177.M. Johansson, G. Kopidakis, S. Lepri, S. Aubry, Transmission thresholds in time-periodically driven nonlinear disordered systems. Europhys. Lett. 86, 10009 (2009)ADSCrossRefGoogle Scholar
- 178.M. Johansson, G. Kopidakis, S. Aubry, KAM tori in 1D random discrete nonlinear Schrödinger model? Europhys. Lett. 91, 50001 (2010)ADSCrossRefGoogle Scholar
- 179.O.I. Kanakov, S. Flach, M.V. Ivanchenko, K.G. Mishagin, Scaling properties of q-breathers in nonlinear acoustic lattices. Phys. Lett. A 365, 416–420 (2007)ADSCrossRefGoogle Scholar
- 180.H. Kantz, P. Grassberger, Internal Arnold diffusion and chaos thresholds in coupled symplectic maps. J. Phys. A-Math. Gen. 21, L127–L133 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
- 181.G.I. Karanis, Ch.L. Vozikis, Fast detection of chaotic behavior in galactic potentials. Astron. Nachr. 329, 403–412 (2008)ADSCrossRefGoogle Scholar
- 182.Y.V. Kartashov, V.A. Vysloukh, L. Torner, Soliton shape and mobility control in optical lattices. Prog. Opt. 52, 63–148 (2009)CrossRefGoogle Scholar
- 183.Y.V. Kartashov, B.A. Malomed, L. Torner, Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247 (2011)ADSCrossRefGoogle Scholar
- 184.A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. IHÉS 51, 137–173 (1980)MathSciNetMATHCrossRefGoogle Scholar
- 185.A. Katok, J.-M. Strelcyn, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lecture Notes in Mathematics, vol. 1222 (Springer, Berlin, 1986)Google Scholar
- 186.A.N. Kaufman, Quasilinear diffusion of an axisymmetric toroidal plasma. Phys. Fluids 15, 1063 (1972)ADSCrossRefGoogle Scholar
- 187.W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Making, probing and understanding Bose-Einstein condensates, in Bose-Einstein Condensation in Atomic Gases. Proceedings of the International School of Physics “Enrico Fermi”, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Amsterdam, 1999), pp. 67–176Google Scholar
- 188.P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation. Tracts in Modern Physics, vol. 232 (Springer, Heidelberg, 2009)Google Scholar
- 189.Y.S. Kivshar, Intrinsic localized modes as solitons with a compact support. Phys. Rev. E 48, R43–R45 (1993)MathSciNetADSCrossRefGoogle Scholar
- 190.Y.S. Kivshar, G.P. Agrawal, Optical Solitons. From Fibers to Photonic Crystals (Academic, Amsterdam, 2003)Google Scholar
- 191.Y.S. Kivshar, B.A. Malomed, Dynamics of solitons in near-integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)ADSCrossRefGoogle Scholar
- 192.W. Kobayashi, Y. Teraoka, I. Terasaki, An oxide thermal rectifier. Appl. Phys. Lett. 95, 171905 (2009)ADSCrossRefGoogle Scholar
- 193.Y. Kominis, Analytical solitary wave solutions of the nonlinear Kronig-Penney model in photonic structures. Phys. Rev. E 73, 066619 (2006)ADSCrossRefGoogle Scholar
- 194.Y. Kominis, T. Bountis, Analytical solutions of systems with piecewise linear dynamics. Int. J. Bifurc. Chaos 20, 509–518 (2010)MathSciNetCrossRefGoogle Scholar
- 195.Y. Kominis, K. Hizanidis, Lattice solitons in self-defocusing optical media: analytical solutions of the nonlinear Kronig-Penney model. Opt. Lett. 31, 2888–2890 (2006)ADSCrossRefGoogle Scholar
- 196.Y. Kominis, K. Hizanidis, Power dependent soliton location and stability in complex photonic structures. Opt. Expr. 16, 12124–12138 (2008)ADSCrossRefGoogle Scholar
- 197.Y. Kominis, K. Hizanidis, Power-dependent reflection, transmission and trapping dynamics of lattice solitons at interfaces. Phys. Rev. Lett. 102, 133903 (2009)ADSCrossRefGoogle Scholar
- 198.Y. Kominis, A. Papadopoulos, K. Hizanidis, Surface solitons in waveguide arrays: analytical solutions. Opt. Expr. 15, 10041–10051 (2007)ADSCrossRefGoogle Scholar
- 199.Y. Kominis, A.K. Ram, K. Hizanidis, Quasilinear theory of electron transport by radio frequency waves and non-axisymmetric perturbations in toroidal plasmas. Phys. Plasmas 15, 122501 (2008)ADSCrossRefGoogle Scholar
- 200.Y. Kominis, T. Bountis, K. Hizanidis, Breathers in a nonautonomous Toda lattice with pulsating coupling. Phys. Rev. E 81, 066601 (2010)MathSciNetADSCrossRefGoogle Scholar
- 201.Y. Kominis, A.K. Ram, K. Hizanidis, Kinetic theory for distribution functions of wave-particle interactions in plasmas. Phys. Rev. Lett. 104, 235001 (2010)ADSCrossRefGoogle Scholar
- 202.G. Kopidakis, S. Komineas, S. Flach, S. Aubry, Absence of wave packet diffusion in disordered nonlinear systems. Phys. Rev. Lett. 100, 084103 (2008)ADSCrossRefGoogle Scholar
- 203.Y.A. Kosevich, Nonlinear sinusoidal waves and their superposition in anharmonic lattices. Phys. Rev. Lett. 71, 2058–2061 (1993)ADSCrossRefGoogle Scholar
- 204.T. Kotoulas, G. Voyatzis, Comparative study of the 2:3 and 3:4 resonant motion with Neptune: an application of symplectic mappings and low frequency analysis. Celest. Mech. Dyn. Astron. 88, 343–363 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
- 205.I. Kovacic, M.J. Brennan (eds.), The Duffing Equation: Nonlinear Oscillators and Their Behaviour (Wiley, Hoboken, 2011)MATHGoogle Scholar
- 206.B. Kramer, A. MacKinnon, Localization: theory and experiment. Rep. Prog. Phys. 56, 1469–1564 (1993)ADSCrossRefGoogle Scholar
- 207.D.O. Krimer, S. Flach, Statistics of wave interactions in nonlinear disordered systems. Phys. Rev. E 82, 046221 (2010)ADSCrossRefGoogle Scholar
- 208.Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008)ADSCrossRefGoogle Scholar
- 209.L.D. Landau, E.M. Lifshitz, Mechanics, Third edn, Volume 1 of Course of Theoretical Physics (Butterworth-Heinemann, Amsterdam, 1976)Google Scholar
- 210.T.V. Laptyeva, J.D. Bodyfelt, D.O. Krimer, Ch. Skokos, S. Flach, The crossover from strong to weak chaos for nonlinear waves in disordered systems. Europhys. Lett. 91, 30001 (2010)ADSCrossRefGoogle Scholar
- 211.J. Laskar, The chaotic motion of the Solar System: a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990)ADSCrossRefGoogle Scholar
- 212.J. Laskar, Frequency analysis of multi-dimensional systems. Global dynamics and diffusion. Phys. D 67, 257–281 (1993)MathSciNetMATHGoogle Scholar
- 213.J. Laskar, Introduction to frequency map analysis, in Hamiltonian Systems of Three or More Degrees of Freedom, ed. by C. Simó. NATO Advanced Study Institute, vol. 533 (Kluwer, Dordrecht, 1999), pp. 134–150Google Scholar
- 214.J. Laskar, C. Froeschlé, A. Celletti, The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard map. Phys. D 56, 253–269 (1992)MATHGoogle Scholar
- 215.M. Lax, W.H. Louisell, W.B. McKnight, From Maxwell to paraxial wave optics. Phys. Rev. A 11, 1365–1370 (1975)ADSCrossRefGoogle Scholar
- 216.F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Y. Silberberg, Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)Google Scholar
- 217.E. Lega, C. Froeschlé, Comparison of convergence towards invariant distributions for rotation angles, twist angles and local Lyapunov characteristic numbers. Planet. Space Sci. 46, 1525–1534 (1998)ADSCrossRefGoogle Scholar
- 218.M. Leo, R.A. Leo, Stability properties of the N ∕ 4 (π ∕ 2-mode) one-mode nonlinear solution of the Fermi-Pasta-Ulam-β system. Phys. Rev. E 76, 016216 (2007)ADSCrossRefGoogle Scholar
- 219.S. Lepri, R. Livi, A. Politi, Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)MathSciNetADSCrossRefGoogle Scholar
- 220.S. Lepri, R. Livi, A. Politi, Studies of thermal conductivity in Fermi Pasta Ulam-like lattices. Chaos 15, 015118 (2005)ADSCrossRefGoogle Scholar
- 221.B. Li, J. Wang, Anomalous heat conduction and anomalous diffusion in one-dimensional systems. Phys. Rev. Lett. 91, 044301 (2003)ADSCrossRefGoogle Scholar
- 222.B. Li, L. Wang, B. Hu, Finite thermal conductivity in 1D models having zero Lyapunov exponents. Phys. Rev. Lett. 88, 223901 (2002)ADSCrossRefGoogle Scholar
- 223.B. Li, G. Casati, J. Wang, Heat conductivity in linear mixing systems. Phys. Rev. E 67, 021204 (2003)ADSCrossRefGoogle Scholar
- 224.B. Li, G. Casati, J. Wang, T. Prosen, Fourier Law in the alternate-mass hard-core potential chain. Phys. Rev. Lett. 92, 254301 (2004)ADSCrossRefGoogle Scholar
- 225.B. Li, J. Wang, G. Casati, Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)ADSCrossRefGoogle Scholar
- 226.A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, Second edn. (Springer, New York, 1992)MATHGoogle Scholar
- 227.A. Lichtenberg, R. Livi, M. Pettini, S. Ruffo, Dynamics of oscillator chains. Lect. Notes Phys. 728, 21–121 (2008)MathSciNetADSCrossRefGoogle Scholar
- 228.R. Livi, M. Pettini, S. Ruffo, A. Vulpiani, Further results on the equipartition threshold in large nonlinear Hamiltonian systems. Phys. Rev. A 31, 2740–2742 (1985)ADSCrossRefGoogle Scholar
- 229.R. Livi, A. Politi, S. Ruffo, Distribution of characteristic exponents in the thermodynamic limit. J. Phys. A-Math. Gen. 19, 2033–2040 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
- 230.W.C. Lo, L. Wang, B. Li, Thermal transistor: heat flux switching and modulating. J. Phys. Soc. Jpn, 77(5), 054402 (2008)Google Scholar
- 231.E. Lohinger, C. Froeschlé, R. Dvorak, Generalized Lyapunov exponents indicators in Hamiltonian dynamics: an application to a double star system. Celest. Mech. Dyn. Astron. 56, 315–322 (1993)ADSMATHCrossRefGoogle Scholar
- 232.A.M. Lyapunov, The General Problem of the Stability of Motion (Taylor and Francis, London, 1992) (English translation from the French: A. Liapounoff, Problème général de la stabilité du mouvement. Annal. Fac. Sci. Toulouse 9, 203–474 (1907). The French text was reprinted in Annals Math. Studies Vol.17 Princeton Univ. Press (1947). The original was published in Russian by the Mathematical Society of Kharkov in 1892)Google Scholar
- 233.M. Macek, P. Stránský, P. Cejnar, S. Heinze, J. Jolie, J. Dobeš, Classical and quantum properties of the semiregular arc inside the Casten triangle. Phys. Rev. C 75, 064318 (2007)ADSCrossRefGoogle Scholar
- 234.M. Macek, J. Dobeš, P. Stránský, P. Cejnar, Regularity-induced separation of intrinsic and collective dynamics. Phys. Rev. Lett. 105, 072503 (2010)ADSCrossRefGoogle Scholar
- 235.R.S. MacKay, S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623–1843 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
- 236.R.S. Mackay, J.D. Meiss, Hamiltonian Dynamical Systems (Adam Hilger, Bristol, 1986)Google Scholar
- 237.M.C. Mackey, M. Tyran-Kaminska, Deterministic Brownian motion: the effects of perturbing a dynamical system by a chaotic semi-dynamical system. Phys. Rep. 422, 167–222 (2006)MathSciNetADSCrossRefGoogle Scholar
- 238.R.S. Mackay, J.D. Meiss, I.C. Percival, Transport in Hamiltonian systems. Phys. D 13, 55–81 (1984)MathSciNetMATHGoogle Scholar
- 239.N.P. Maffione, L.A. Darriba, P.M. Cincotta, C.M. Giordano, A comparison of different indicators of chaos based on the deviation vectors: application to symplectic mappings. Celest. Mech. Dyn. Astron. 111, 285–307 (2011)MathSciNetADSCrossRefGoogle Scholar
- 240.W. Magnus, S. Winkler, Hill’s Equation (Wiley, New York, 1969) and 2nd edn. (Dover, New York, 2004)Google Scholar
- 241.P. Maniadis, T. Bountis, Quasiperiodic and chaotic breathers in a parametrically driven system without linear dispersion. Phys. Rev. E 73, 046211 (2006)MathSciNetADSCrossRefGoogle Scholar
- 242.T. Manos, E. Athanassoula, Regular and chaotic orbits in barred galaxies – I. Applying the SALI/GALI method to explore their distribution in several models. Mon. Not. R. Astron. Soc. 415, 629–642 (2011)Google Scholar
- 243.T. Manos, S. Ruffo, Scaling with system size of the Lyapunov exponents for the Hamiltonian Mean Field model. Transp. Theor. Stat. 40, 360–381 (2011)MathSciNetCrossRefGoogle Scholar
- 244.T. Manos, Ch. Skokos, T. Bountis, Application of the Generalized Alignment Index (GALI) method to the dynamics of multi-dimensional symplectic maps, in Chaos, Complexity and Transport: Theory and Applications. Proceedings of the CCT07, ed. by C. Chandre, X. Leoncini, G. Zaslavsky (World Scientific, Singapore, 2008), pp. 356–364CrossRefGoogle Scholar
- 245.T. Manos, Ch. Skokos, E. Athanassoula, T. Bountis, Studying the global dynamics of conservative dynamical systems using the SALI chaos detection method. Nonlinear Phenom. Complex Syst. 11, 171–176 (2008)MathSciNetGoogle Scholar
- 246.T. Manos, Ch. Skokos, T. Bountis, Global dynamics of coupled standard maps, in Chaos in Astronomy. Astrophysics and Space Science Proceedings, ed. by G. Contopoulos, P.A. Patsis (Springer, Berlin/Heidelberg, 2009), pp. 367–371Google Scholar
- 247.T. Manos, Ch. Skokos, Ch. Antonopoulos, Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method. Int. J. Bifurc. Chaos (2012, In Press) E-print arXiv:1103.0700Google Scholar
- 248.J.L. Marín, S. Aubry, Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit. Nonlinearity 9, 1501–1528 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
- 249.J.D. Meiss, E. Ott, Markov tree model of transport in area-preserving maps. Phys. D 20, 387–402 (1986)MathSciNetMATHCrossRefGoogle Scholar
- 250.D.R. Merkin, Introduction to the Theory of Stability. Series: Texts in Applied Mathematics, vol. 24 (Springer, New York, 1997)Google Scholar
- 251.G. Miritello, A. Pluchino, A. Rapisarda, Central limit behavior in the Kuramoto model at the “edge of chaos”. Phys. A 388, 4818–4826 (2009)CrossRefGoogle Scholar
- 252.M. Molina, Transport of localized and extended excitations in a nonlinear Anderson model. Phys. Rev. B 58, 12547–12550 (1998)ADSCrossRefGoogle Scholar
- 253.M. Mulansky, A. Pikovsky, Spreading in disordered lattices with different nonlinearities. Europhys. Lett. 90, 10015 (2010)ADSCrossRefGoogle Scholar
- 254.M. Mulansky, K. Ahnert, A. Pikovsky, D.L. Shepelyansky, Dynamical thermalization of disordered nonlinear lattices. Phys. Rev. E 80, 056212 (2009)ADSCrossRefGoogle Scholar
- 255.M. Mulansky, K. Ahnert, A. Pikovsky, Scaling of energy spreading in strongly nonlinear disordered lattices. Phys. Rev. E 83, 026205 (2011)ADSCrossRefGoogle Scholar
- 256.N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltoninan systems. Russ. Math. Surv. 32(6), 1–65 (1977)MATHCrossRefGoogle Scholar
- 257.Z. Nitecki, Differentiable Dynamics (M.I.T., Cambridge, MA, 1971)MATHGoogle Scholar
- 258.J.A. Núñez, P.M. Cincotta, F.C. Wachlin, Information entropy. An indicator of chaos. Celest. Mech. Dyn. Astron. 64, 43–53 (1996)ADSMATHCrossRefGoogle Scholar
- 259.V.I. Oseledec, A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)MathSciNetGoogle Scholar
- 260.E.A. Ostrovskaya, Y.S. Kivshar, Matter-wave gap vortices in optical lattices. Phys. Rev. Lett. 93, 160405 (2004)ADSCrossRefGoogle Scholar
- 261.A.A. Ovchinnikov, Localized long-lived vibrational states in molecular crystals. Sov. Phys. JETP-USSR 30, 147 (1970)ADSGoogle Scholar
- 262.P. Panagopoulos, T.C. Bountis, Ch. Skokos, Existence and stability of localized oscillations in one-dimensional lattices with soft spring and hard spring potentials. J. Vib. Acoust. 126, 520–527 (2004)CrossRefGoogle Scholar
- 263.P. Papagiannis, Y. Kominis, K. Hizanidis, Power- and momentum-dependent soliton dynamics in lattices with longitudinal modulation. Phys. Rev. A 84, 013820 (2011)ADSCrossRefGoogle Scholar
- 264.R.E. Peierls, Quantum theory of solids, in Theoretical Physics in the Twentieth Century, ed. by M. Fierz, V.F. Weisskopf (Wiley, New York, 1961) 140–160Google Scholar
- 265.L. Perko, Differential Equations and Dynamical Systems (Springer, New York, 1995)Google Scholar
- 266.J.B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents. Math. USSR Izv. 10, 1261–1305 (1976)CrossRefGoogle Scholar
- 267.Ya.B. Pesin, Lyapunov characteristic indexes and ergodic properties of smooth dynamic systems with invariant measure. Dokl. Acad. Nauk. SSSR 226, 774–777 (1976)Google Scholar
- 268.Ya.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32(4), 55–114 (1977)Google Scholar
- 269.Y.G. Petalas, C.G. Antonopoulos, T.C. Bountis, M.N. Vrahatis, Evolutionary methods for the approximation of the stability domain and frequency optimization of conservative maps. Int. J. Bifurc. Chaos 18, 2249–2264 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 270.M. Peyrard, The design of a thermal rectifier. Europhys. Lett. 76, 49 (2006)ADSCrossRefGoogle Scholar
- 271.A. Pikovsky, D. Shepelyansky, Destruction of Anderson localization by a weak nonlinearity. Phys. Rev. Lett. 100, 094101 (2008)ADSCrossRefGoogle Scholar
- 272.P. Poggi, S. Ruffo, Exact solutions in the FPU oscillator chain. Phys. D 103, 251–272 (1997)MathSciNetMATHCrossRefGoogle Scholar
- 273.H. Poincaré, Sur les Propriétés des Functions Définies par les Équations aux Différences Partielles (Gauthier-Villars, Paris, 1879)Google Scholar
- 274.H. Poincaré Les Méthodes Nouvelles de la Mécanique Céleste, vol. 1 (Gauthier Villars, Paris, 1892) (English translation by D.L. Goroff, New Methods in Celestial Mechanics (American Institute of Physics, 1993))Google Scholar
- 275.A. Ponno, D. Bambusi, Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam. Chaos 15, 015107 (2005)MathSciNetADSCrossRefGoogle Scholar
- 276.A. Ponno, E. Christodoulidi, Ch. Skokos, S. Flach, The two-stage dynamics in the Fermi-Pasta-Ulam problem: from regular to diffusive behavior. Chaos, 21, 043127 (2011)ADSCrossRefGoogle Scholar
- 277.W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flanney, Numerical Recipes in Fortran 77. The Art of Scientific Computing, Second edn. (Cambridge University Press, Cambridge/New York, 2001)Google Scholar
- 278.K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)ADSCrossRefGoogle Scholar
- 279.A. Ramani, B. Grammaticos, T. Bountis, The Painlevé property and singularity analysis of integrable and non-integrable systems. Phys. Rep. 180, 159–245 (1989)MathSciNetADSCrossRefGoogle Scholar
- 280.A.B. Rechester, R.B. White, Calculation of turbulent diffusion for the Chirikov-Taylor model. Phys. Rev. Lett. 44, 1586–1589 (1980)MathSciNetADSCrossRefGoogle Scholar
- 281.A. Rényi, On measures of information and entropy, in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability 1960, University of California Press, Berkeley/Los Angeles, 1961, pp. 547–561Google Scholar
- 282.J.A. Rice, Mathematical Statistics and Data Analysis, Second edn. (Duxbury Press, Belmont, 1995)MATHGoogle Scholar
- 283.B. Rink, Symmetric invariant manifolds in the Fermi-Pasta-Ulam lattice. Phys. D 175, 31–42 (2003)MathSciNetMATHCrossRefGoogle Scholar
- 284.G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, Anderson localization of a non-interacting Bose-Einstein condensate. Nature 453, 895–899 (2008)ADSCrossRefGoogle Scholar
- 285.A. Rodríguez, V. Schwämmle, C. Tsallis, Strictly and asymptotically scale invariant probabilistic models of N correlated binary random variables having q-Gaussians as N → ∞ limiting distributions. J. Stat. Mech.-Theory Exp. 2008, P09006 (2008)CrossRefGoogle Scholar
- 286.R.M. Rosenberg, The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech. 29, 7–14 (1962)ADSMATHCrossRefGoogle Scholar
- 287.V.M. Rothos, T. Bountis, Mel’nikov analysis of phase space transport in a N-degree-of-freedom Hamiltonian system. Nonlinear Anal. Theor. 30, 1365–1374 (1997)MathSciNetMATHCrossRefGoogle Scholar
- 288.V.M. Rothos, T. Bountis, Mel’nikov’s vector and singularity analysis of periodically perturbed 2 d.o.f. Hamiltonian systems, in Hamiltonian Systems of Three or More Degrees of Freedom, ed. by C. Simó. NATO Advanced Study Institute, vol. 533 (Kluwer, Dordrecht, 1999), pp. 544–548Google Scholar
- 289.D. Ruelle, Ergodic theory of differentiable dynamical systems. Publ. Math. IHÉS 50, 27–58 (1979)MathSciNetMATHCrossRefGoogle Scholar
- 290.D. Ruelle, Measures describing a turbulent flow. Ann. NY Acad.Sci. 357, 1–9 (1980)Google Scholar
- 291.D. Ruelle, Large volume limit of the distribution of characteristic exponents in turbulence. Commun. Math. Phys. 87, 287–302 (1982)MathSciNetADSMATHCrossRefGoogle Scholar
- 292.G. Ruiz, C. Tsallis, Nonextensivity at the edge of chaos of a new universality class of one-dimensional unimodal dissipative maps. Eur. Phys. J. B 67, 577–584 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
- 293.G. Ruiz, T. Bountis, C. Tsallis, Time-evolving statistics of chaotic orbits of conservative maps in the context of the central limit theorem. Int. J. Bifurc. Chaos. (2012, In Press) arXiv:1106.6226Google Scholar
- 294.V.P. Sakhnenko, G.M. Chechin, Symmetrical selection rules in nonlinear dynamics of atomic systems. Sov. Phys. Dokl. 38, 219–221 (1993)Google Scholar
- 295.V.P. Sakhnenko, G.M. Chechin, Bushes of modes and normal modes for nonlinear dynamical systems with discrete symmetry. Sov. Phys. Dokl. 39, 625–628 (1994)MathSciNetGoogle Scholar
- 296.Zs. Sándor, B. Érdi, C. Efthymiopoulos, The phase space structure around L 4 in the restricted three-body problem. Celest. Mech. Dyn. Astron. 78, 113–123 (2000)Google Scholar
- 297.Zs. Sándor, B. Érdi, A. Széll, B. Funk, The relative Lyapunov indicator: an efficient method of chaos detection. Celest. Mech. Dyn. Astron. 90, 127–138 (2004)Google Scholar
- 298.K.W. Sandusky, J.B. Page, Interrelation between the stability of extended normal modes and the existence of intrinsic localized modes in nonlinear lattices with realistic potentials. Phys. Rev. B 50, 866–887 (1994)ADSCrossRefGoogle Scholar
- 299.T. Schwartz, G. Bartal, S. Fishman, M. Segev, Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007)ADSCrossRefGoogle Scholar
- 300.H. Segur, M.D. Kruskal, Nonexistence of small-amplitude breather solutions in ϕ4 theory. Phys. Rev. Lett. 58, 747–750 (1987)MathSciNetADSCrossRefGoogle Scholar
- 301.V.D. Shapiro, R.Z. Sagdeev, Nonlinear wave-particle interaction and conditions for the applicability of quasilinear theory. Phys. Rep. 283, 49–71 (1997)ADSCrossRefGoogle Scholar
- 302.H. Shiba, N. Ito, Anomalous heat conduction in three-dimensional nonlinear lattices. J. Phys. Soc. Jpn. 77, 05400 (2008)CrossRefGoogle Scholar
- 303.S. Shinohara, Low-dimensional solutions in the quartic Fermi-Pasta-Ulam system. J. Phys. Soc. Jpn. 71, 1802–1804 (2002)ADSCrossRefGoogle Scholar
- 304.S. Shinohara, Low-dimensional subsystems in anharmonic lattices. Prog. Theor. Phys. Suppl. 150, 423–434 (2003)ADSCrossRefGoogle Scholar
- 305.I.V. Sideris, Measure of orbital stickiness and chaos strength. Phys. Rev. E 73, 066217 (2006)ADSCrossRefGoogle Scholar
- 306.A.J. Sievers, S. Takeno, Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)ADSCrossRefGoogle Scholar
- 307.Y.G. Sinai, Dynamical systems with elastic reflections. Russ. Math. Surv. 25(2), 137–189 (1970)MathSciNetMATHCrossRefGoogle Scholar
- 308.Ya.G. Sinai, Gibbs measures in ergodic theory. Russ. Math. Surv. 27(4), 21–69 (1972)Google Scholar
- 309.Ch. Skokos, Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A-Math. Gen. 34, 10029–10043 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
- 310.Ch. Skokos, The Lyapunov characteristic exponents and their computation. Lect. Notes Phys. 790, 63–135 (2010)ADSCrossRefGoogle Scholar
- 311.Ch. Skokos, S. Flach, Spreading of wave packets in disordered systems with tunable nonlinearity. Phys. Rev. E 82, 016208 (2010)ADSCrossRefGoogle Scholar
- 312.Ch. Skokos, E. Gerlach, Numerical integration of variational equations. Phys. Rev. E 82, 036704 (2010)MathSciNetADSCrossRefGoogle Scholar
- 313.Ch. Skokos, Ch. Antonopoulos, T.C. Bountis, M.N. Vrahatis, How does the smaller alignment index (SALI) distinguish order from chaos? Prog. Theor. Phys. Suppl. 150, 439–443 (2003)ADSCrossRefGoogle Scholar
- 314.Ch. Skokos, Ch. Antonopoulos, T.C. Bountis, M.N. Vrahatis, Detecting order and chaos in Hamiltonian systems by the SALI method. J. Phys. A-Math. Gen. 37, 6269–6284 (2004)MathSciNetADSCrossRefGoogle Scholar
- 315.Ch. Skokos, T.C. Bountis, Ch. Antonopoulos, Geometrical properties of local dynamics in Hamiltonian systems: the generalized alignment index (GALI) method. Phys. D 231, 30–54 (2007)MathSciNetMATHCrossRefGoogle Scholar
- 316.Ch. Skokos, T. Bountis, Ch. Antonopoulos, Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the generalized alignment index method. Eur. Phys. J.-Spec. Top. 165, 5–14 (2008)CrossRefGoogle Scholar
- 317.Ch. Skokos, D.O. Krimer, S. Komineas, S. Flach, Delocalization of wave packets in disordered nonlinear chains. Phys. Rev. E 79, 056211 (2009)MathSciNetADSCrossRefGoogle Scholar
- 318.A. Smerzi, A. Trombettoni, Nonlinear tight-binding approximation for Bose-Einstein condensates in a lattice. Phys. Rev. A 68, 023613 (2003)MathSciNetADSCrossRefGoogle Scholar
- 319.P. Soulis, T. Bountis, R. Dvorak, Stability of motion in the Sitnikov 3-body problem. Celest. Mech. Dyn. Astron. 99, 129–148 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
- 320.P.S. Soulis, K.E. Papadakis, T. Bountis, Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest. Mech. Dyn. Astron. 100, 251–266 (2008)MathSciNetADSCrossRefGoogle Scholar
- 321.M. Spivak, Comprehensive Introduction to Differential Geometry, vol. 1 (Perish Inc., Houston, 1999)MATHGoogle Scholar
- 322.P. Stránský, P. Hruška, P. Cejnar, Quantum chaos in the nuclear collective model: classical-quantum correspondence. Phys. Rev. E 79, 046202 (2009)ADSCrossRefGoogle Scholar
- 323.M. Strözer, P. Gross, C.M. Aegerter, G. Maret, Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006)ADSCrossRefGoogle Scholar
- 324.Á. Süli, Motion indicators in the 2D standard map. PADEU 17, 47–62 (2006)ADSGoogle Scholar
- 325.A. Széll, B. Érdi, Z. Sándor, B. Steves, Chaotic and stable behaviour in the Caledonian symmetric four-body problem. Mon. Not. R. Astron. Soc. 347, 380–388 (2004)ADSCrossRefGoogle Scholar
- 326.M. Terraneo, M. Peyrard, G. Casati, Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88, 094302 (2002)ADSCrossRefGoogle Scholar
- 327.U. Tirnakli, C. Beck, C. Tsallis, Central limit behavior of deterministic dynamical systems. Phys. Rev. E 75, 040106 (2007)ADSCrossRefGoogle Scholar
- 328.U. Tirnakli, C. Tsallis, C. Beck, Closer look at time averages of the logistic map at the edge of chaos. Phys. Rev. E 79, 056209 (2009)MathSciNetADSCrossRefGoogle Scholar
- 329.M. Toda, Theory of Nonlinear Lattices, (2nd edn.) (Springer, Berlin, 1989)MATHCrossRefGoogle Scholar
- 330.S. Trillo, W. Torruellas (eds.), Spatial Solitons (Springer, Berlin, 2001)Google Scholar
- 331.A. Trombettoni, A. Smerzi, Discrete solitons and breathers with dilute Bose-Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (2001)ADSCrossRefGoogle Scholar
- 332.C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, New York, 2009)MATHGoogle Scholar
- 333.C. Tsallis, U. Tirnakli, Nonadditive entropy and nonextensive statistical mechanics – Some central concepts and recent applications. J. Phys. Conf. Ser. 201, 012001 (2010)ADSCrossRefGoogle Scholar
- 334.G.P. Tsironis, An algebraic approach to discrete breather construction. J. Phys. A-Math. Theor. 35, 951–957 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
- 335.S. Umarov, C. Tsallis, S. Steinberg, On a q-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 76, 307–328 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 336.S. Umarov, C. Tsallis, M. Gell-Mann, S. Steinberg, Generalization of symmetric α-stable Lévy distributions for q > 1. J. Math. Phys. 51, 033502 (2010)MathSciNetADSCrossRefGoogle Scholar
- 337.A.A. Vedenov, E.P. Velikhov, R.Z. Sagdeev, Nonlinear oscillations of rarified plasma. Nucl. Fusion 1, 82–100 (1961)CrossRefGoogle Scholar
- 338.H. Veksler, Y. Krivolapov, S. Fishman, Spreading for the generalized nonlinear Schrödinger equation with disorder. Phys. Rev. E 80, 037201 (2009)ADSCrossRefGoogle Scholar
- 339.H. Veksler, Y. Krivolapov, S. Fishman, Double-humped states in the nonlinear Schrödinger equation with a random potential. Phys. Rev. E 81, 017201 (2010)MathSciNetADSCrossRefGoogle Scholar
- 340.N. Voglis, G. Contopoulos, Invariant spectra of orbits in dynamical systems. J. Phys. A-Math. Gen. 27, 4899–4909 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
- 341.N. Voglis, G. Contopoulos, C. Efthymiopoulos, Method for distinguishing between ordered and chaotic orbits in four-dimensional maps. Phys. Rev. E 57, 372–377 (1998)ADSCrossRefGoogle Scholar
- 342.G. Voyatzis, S. Ichtiaroglou, On the spectral analysis of trajectories in near-integrable Hamiltonian systems. J. Phys. A-Math. Gen. 25, 5931–5943 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
- 343.J.-S. Wang, B. Li, Intriguing heat conduction of a chain with transverse motions. Phys. Rev. Lett. 92, 074302 (2004)ADSCrossRefGoogle Scholar
- 344.E.T. Whittaker, G.N. Watson, A Course in Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 1927)/(Cambridge Mathematical Library, Cambridge, 2002)Google Scholar
- 345.D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Localization of light in a disordered medium. Nature 390, 671–673 (1997)ADSCrossRefGoogle Scholar
- 346.S. Wiggins, Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 1990)MATHGoogle Scholar
- 347.S. Wiggins, Chaotic Transport in Dynamical Systems (Springer, New York, 1992)MATHGoogle Scholar
- 348.N. Yang, G. Zhang, B. Li, Carbon nanocone: a promising thermal rectifier. Appl. Phys. Lett. 93, 243111 (2008)ADSCrossRefGoogle Scholar
- 349.H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)MathSciNetADSCrossRefGoogle Scholar
- 350.H. Yoshida, Recent progress in the theory and application of symplectic integrators. Celest. Mech. Dyn. Astr. 56, 27–43 (1993)ADSMATHCrossRefGoogle Scholar
- 351.K. Yoshimura, Modulational instability of zone boundary mode in nonlinear lattices: rigorous results. Phys. Rev. E 70, 016611 (2004)MathSciNetADSCrossRefGoogle Scholar
- 352.N.J. Zabusky, M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)ADSMATHCrossRefGoogle Scholar
- 353.G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
- 354.Y. Zou, D. Pazó, M.C. Romano, M. Thiel, J. Kurths, Distinguishing quasiperiodic dynamics from chaos in short-time series. Phys. Rev. E 76, 016210 (2007)MathSciNetADSCrossRefGoogle Scholar
- 355.Y. Zou, M. Thiel, M.C. Romano, J. Kurths, Characterization of stickiness by means of recurrence. Chaos 17, 043101 (2007)MathSciNetADSCrossRefGoogle Scholar