A Keyphrase-Based Paper Recommender System

  • Felice Ferrara
  • Nirmala Pudota
  • Carlo Tasso
Part of the Communications in Computer and Information Science book series (CCIS, volume 249)

Abstract

Current digital libraries suffer from the information overload problem which prevents an effective access to knowledge. This is particularly true for scientific digital libraries where a growing amount of scientific articles can be explored by users with different needs, backgrounds, and interests. Recommender systems can tackle this limitation by filtering resources according to specific user needs. This paper introduces a content-based recommendation approach for enhancing the access to scientific digital libraries where a keyphrase extraction module is used to produce a rich description of both content of papers and user interests.

Keywords

Recommender systems content-based keyphrase extraction adaptive personalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agosti, M.: Information Access Through Digital Library Systems. In: Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS, vol. 4822, pp. 11–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-specific keyphrase extraction. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, July 31-August 6, pp. 668–673. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  3. 3.
    Krulwich, B., Burkey, C.: Learning user information interests through the extraction of semantically significant phrases. In: Hearst, M., Hirsh, H. (eds.) AAAI 1996 Spring Symposium on Machine Learning in Information Access, pp. 110–112. AAAI Press, California (1996)Google Scholar
  4. 4.
    Pudota, N., Dattolo, A., Baruzzo, A., Ferrara, F., Tasso, C.: Automatic keyphrase extraction and ontology mining for content-based tag recommendation. International Journal of Intelligent Systems, Special Issue: New Trends for Ontology-Based Knowledge Discovery 25, 1158–1186 (2010)CrossRefMATHGoogle Scholar
  5. 5.
    Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: Kea: practical automatic keyphrase extraction. In: Proceedings of the Fourth ACM Conference on Digital Libraries, pp. 254–255. ACM, New York (1999)CrossRefGoogle Scholar
  6. 6.
    Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 216–223. Association for Computational Linguistics, Morristown (2003)CrossRefGoogle Scholar
  7. 7.
    D’Avanzo, E., Magnini, B., Vallin, A.: Keyphrase extraction for summarization purposes: the lake system at duc2004. In: DUC Workshop, Human Language Technology Conference / North American Chapter of the Association for Computational Linguistics Annual Meeting, Boston, USA (2004)Google Scholar
  8. 8.
    Barker, K., Cornacchia, N.: Using Noun Phrase Heads to Extract Document Keyphrases. In: Hamilton, H.J. (ed.) Canadian AI 2000. LNCS (LNAI), vol. 1822, pp. 40–52. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Bracewell, D.B., Ren, F., Kuroiwa, S.: Multilingual single document keyword extraction for information retrieval. In: Proceedings of the 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering, Wuhan, pp. 517–522 (2005)Google Scholar
  10. 10.
    Mihalcea, R., Tarau, P.: Textrank: Bringing order into texts. In: Dekang, L., Dekai, W. (eds.) Proc. of Empirical Methods in Natural Language Processing, pp. 404–411. Association for Computational Linguistics, Barcelona (2004)Google Scholar
  11. 11.
    Litvak, M., Last, M.: Graph-based keyword extraction for single-document summarization. In: Proceedings of the Workshop on Multi-source Multilingual Information Extraction and Summarization, pp. 17–24. ACL, Morristown (2008)CrossRefGoogle Scholar
  12. 12.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks 30, 107–117 (1998)Google Scholar
  13. 13.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transaction on Knowledge and Data Engineering 17, 734–749 (2005)CrossRefGoogle Scholar
  14. 14.
    Malone, T.W., Grant, K.R., Turbak, F.A., Brobst, S.A., Cohen, M.D.: Intelligent information-sharing systems. Communications of ACM 30, 390–402 (1987)CrossRefGoogle Scholar
  15. 15.
    Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Dattolo, A., Ferrara, F., Tasso, C.: Supporting Personalized User Concept Spaces and Recommendations for a Publication Sharing System. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 325–330. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Chandrasekaran, K., Gauch, S., Lakkaraju, P., Luong, H.P.: Concept-Based Document Recommendations for CiteSeer Authors. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 83–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Sugiyama, K., Kan, M.-Y.: Scholarly paper recommendation via user’s recent research interests. In: Proceedings of the 10th Annual Joint Conference on Digital Libraries, JCDL 2010, pp. 29–38. ACM, New York (2010)Google Scholar
  19. 19.
    Gori, M., Pucci, A.: Research paper recommender systems: A random-walk based approach. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2006, pp. 778–781. IEEE Computer Society, Washington, DC (2006)CrossRefGoogle Scholar
  20. 20.
    Baruzzo, A., Dattolo, A., Pudota, N., Tasso, C.: A General Framework for Personalized Text Classification and Annotation. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 31–39. Springer, Heidelberg (2009)Google Scholar
  21. 21.
    Dattolo, A., Ferrara, F., Tasso, C.: The Role of Tags for Recommendation: a Survey. In: Hippe, Z., Kulikowski, J., Mroczek, T. (eds.) Backgrounds and Applications 2. AISC. Springer, Heidelberg (in printing)Google Scholar
  22. 22.
    Tasso, C., Asnicar, F.A.: ifweb: a prototype of user model-based intelligent agent for document filtering and navigation in the world wide web. In: 6th UM Inter. Conf. Adaptive Systems and User Modeling on the WWW (1997)Google Scholar
  23. 23.
    Porter, M.F.: An algorithm for suffix stripping. Readings in Information Retrieval, 313–316 (1997)Google Scholar
  24. 24.
    Justeson, J., Katz, S.: Technical terminology: some linguistic properties and an algorithm for identification in text. Natural Language Engineering 1, 9–27 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Felice Ferrara
    • 1
  • Nirmala Pudota
    • 1
  • Carlo Tasso
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly

Personalised recommendations