Decomposition of Constraint Automata

  • Bahman Pourvatan
  • Marjan Sirjani
  • Farhad Arbab
  • Marcello M. Bonsangue
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6921)


Reo is a coordination language that can be used to model different systems. Constraint automata form a formal semantics for Reo connectors based on a co-algebraic model of streams. In this paper, we introduce complete constraint automata (CCA) whose extra information about entropy states helps in analyzing and decomposing them into Reo circuits. We show that a complete constraint automaton is invertible. This property helps to partition and decompose a constraint automaton, a process which can be utilized to synthesize Reo circuits from constraint automata, automatically.


Reo Constraint automata Automata decomposition Complete constraint automata Inverse Automata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Mathematical Structures in Computer Science 14, 329–366 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component connectors in Reo by constraint automata (extended abstract). Electr. Notes Theor. Comput. Sci. 97, 25–46 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Mehta, N.R., Medvidovic, N., Sirjani, M., Arbab, F.: Modeling behavior in compositions of software architectural primitives. In: ASE, pp. 371–374. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  4. 4.
    Razavi, N., Sirjani, M.: Using Reo for formal specification and verification of system designs. In: MEMOCODE, pp. 113–122. IEEE, Los Alamitos (2006)Google Scholar
  5. 5.
    Meng, S., Arbab, F.: Web services choreography and orchestration in Reo and constraint automata. In: Cho, Y., Wainwright, R.L., Haddad, H., Shin, S.Y., Koo, Y.W. (eds.) SAC, pp. 346–353. ACM, New York (2007)Google Scholar
  6. 6.
    Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1, 131–137 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Krohn, K., Rhodes, J.: Algebraic theory of machines. I. prime decomposition theorem for finite semigroups and machines. Transactions of the American Mathematical Society, vol. 116, pp. 450–464. ACM, New York (1965)zbMATHGoogle Scholar
  9. 9.
    Eilenberg, S.: Automata, languages and machines (1976)Google Scholar
  10. 10.
    Egri-Nagy, A., Nehaniv, C.L.: Algebraic hierarchical decomposition of finite state automata: Comparison of implementations for Krohn-Rhodes theory. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 315–316. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Schützenberger, M.: On the definition of a family of automata. Information and Control, 245–270 (1961)Google Scholar
  12. 12.
    Kozen, D.: On Kleene algebras and closed semirings. In: Proc. Mathematical Foundations in Computer Science, vol. 452, pp. 26–47 (1990)Google Scholar
  13. 13.
    Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M., Sirjani, M.: Synthesis of Reo circuits for implementation of component-connector automata specifications. In: Jacquet, J.M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 236–251. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Koehler, C., Clarke, D.: Decomposing port automata. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 1369–1373. ACM, New York (2009)Google Scholar
  15. 15.
    Vuillemin, J., Gama, N.: Compact normal form for regular languages as xor automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 24–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bahman Pourvatan
    • 1
    • 2
  • Marjan Sirjani
    • 3
    • 4
  • Farhad Arbab
    • 5
    • 2
  • Marcello M. Bonsangue
    • 5
    • 2
  1. 1.AmirKabir UniversityTehranIran
  2. 2.LIACSLeiden UniversityLeidenThe Netherlands
  3. 3.Reykjavik UniversityReykjavikIceland
  4. 4.University of TehranTehranIran
  5. 5.CWIAmsterdamThe Netherlands

Personalised recommendations