Advertisement

Fresh Re-keying II: Securing Multiple Parties against Side-Channel and Fault Attacks

  • Marcel Medwed
  • Christoph Petit
  • Francesco Regazzoni
  • Mathieu Renauld
  • François-Xavier Standaert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7079)

Abstract

Security-aware embedded systems are widespread nowadays and many applications, such as payment, pay-TV and automotive applications rely on them. These devices are usually very resource constrained but at the same time likely to operate in a hostile environment. Thus, the implementation of low-cost protection mechanisms against physical attacks is vital for their market relevance. An appealing choice, to counteract a large family of physical attacks with one mechanism, seem to be protocol-level countermeasures. At last year’s Africacrypt, a fresh re-keying scheme has been presented which combines the advantages of re-keying with those of classical countermeasures such as masking and hiding. The contribution of this paper is threefold: most importantly, the original fresh re-keying scheme was limited to one low-cost party (e.g. an RFID tag) in a two party communication scenario. In this paper we extend the scheme to n low-cost parties and show that the scheme is still secure. Second, one unanswered question in the original paper was the susceptibility of the scheme to algebraic SPA attacks. Therefore, we analyze this property of the scheme. Finally, we implemented the scheme on a common 8-bit microcontroller to show its efficiency in software.

Keywords

Side-channel attacks Fault attacks Re-keying Masking Shuffling 

References

  1. 1.
    The Department of Computer Science at Duke University, Discrete Mathematics for Computer Science lecture, Chapter 18: Probability in hashing (2009), http://www.cs.duke.edu/courses/cps102/spring09/Lectures/L-18.pdf
  2. 2.
    Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error Analysis and Detection Procedures for a Hardware Implementation of the Advanced Encryption Standard. IEEE Trans. Computers 52(4), 492–505 (2003)CrossRefGoogle Scholar
  3. 3.
    Bogdanov, A.: Improved Side-Channel Collision Attacks on AES. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Dodis, Y., Pietrzak, K.: Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks on Feistel Networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 21–40. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: FOCS, pp. 293–302. IEEE Computer Society (2008)Google Scholar
  7. 7.
    Feldhofer, M., Popp, T.: Power Analysis Resistant AES Implementation for Passive RFID Tags. In: Lackner, C., Ostermann, T., Sams, M., Spilka, R. (eds.) Proceedings of Austrochip 2008, Linz, Austria, October 8, pp. 1–6 (2008) ISBN 978-3-200-01330-8Google Scholar
  8. 8.
    Genelle, L., Prouff, E., Quisquater, M.: Montgomery’s Trick and Fast Implementation of Masked AES. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 153–169. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis (The ”Duplication” Method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resistant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for fault-based side-channel cryptanalysis of symmetric block ciphers. IEEE Trans. on CAD of Integrated Circuits and Systems 21(12), 1509–1517 (2002)CrossRefGoogle Scholar
  13. 13.
    Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental Security Analysis of a Modern Automobile. In: IEEE Symposium on Security and Privacy, pp. 447–462. IEEE Computer Society (2010)Google Scholar
  14. 14.
    Ledig, H., Muller, F., Valette, F.: Enhancing Collision Attacks. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 176–190. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Mangard, S.: A Simple Power-Analysis (SPA) Attackon Implementations of the AES Key Expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 343–358. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  17. 17.
    McEvoy, R.P., Tunstall, M., Whelan, C., Murphy, C.C., Marnane, W.P.: All-or-Nothing Transforms as a Countermeasure to Differential Side-Channel Analysis. Cryptology ePrint Archive, Report 2009/185 (2009), http://eprint.iacr.org/
  18. 18.
    Medwed, M., Standaert, F.-X.: Extractors against Side-Channel Attacks: Weak or Strong? In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 256–272. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh Re-keying: Security against Side-Channel and Fault Attacks for Low-Cost Devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic Side-Channel Analysis in the Presence of Errors. In: Mangard, Standaert (eds.) [16], pp. 428–442Google Scholar
  21. 21.
    Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Plos, T., Feldhofer, M.: Hardware Implementation of a Flexible Tag Platform for Passive RFID Devices. In: Proceedings of the 14th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2011), Oulu, Finland, August 2010, pp. xxx–xxx. IEEE Computer Society (2011)Google Scholar
  23. 23.
    Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic Side-Channel Attacks on the AES: Why Time also Matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Mangard, Standaert (eds.) [16], pp. 413–427Google Scholar
  25. 25.
    Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and Its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Standaert, F.-X.: Leakage Resilient Cryptography: a Practical Overview. Invited talk, ECRYPT Workshop on Symmetric Encryption (SKEW 2011), Copenhagen, Denmark (February 2011), http://perso.uclouvain.be/fstandae/PUBLIS/96_slides.pdf
  27. 27.
    Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.: Leakage Resilient Cryptography in Practice. In: Towards Hardware Intrinsic Security: Foundation and Practice (book chapter), pp. 105–139. Springer, Heidelberg (2010)Google Scholar
  28. 28.
    Tiri, K., Verbauwhede, I.: Securing Encryption Algorithms against DPA at the Logic Level: Next Generation Smart Card Technology. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. In: DATE, pp. 246–251. IEEE Computer Society (2004)Google Scholar
  30. 30.
    VanLaven, J., Brehob, M., Compton, K.J.: Side Channel Analysis, Fault Injection and Applications - A Computationally Feasible SPA Attack on AES via Optimized Search. In: Sasaki, R., Qing, S., Okamoto, E., Yoshiura, H. (eds.) SEC, pp. 577–588. Springer, Heidelberg (2005)Google Scholar
  31. 31.
    Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudorandom generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security, pp. 141–151. ACM (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Marcel Medwed
    • 1
  • Christoph Petit
    • 1
  • Francesco Regazzoni
    • 1
  • Mathieu Renauld
    • 1
  • François-Xavier Standaert
    • 1
  1. 1.UCL Crypto GroupUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations