A Hardware Processor Supporting Elliptic Curve Cryptography for Less than 9 kGEs

  • Erich Wenger
  • Michael Hutter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7079)

Abstract

Elliptic Curve Cryptography (ECC) based processors have gained large attention in the context of embedded-system design due to their ability of efficient implementation. In this paper, we present a low-resource processor that supports ECC operations for less than 9 kGEs. We base our design on an optimized 16-bit microcontroller that provides high flexibility and scalability for various applications. The design allows the use of an optimized RAM-macro block and reduces the complexity by sharing various resources of the controller and the datapath. Our results improves the state of the art in low-resource \(\mathbb{F}_{2^{163}}\) ECC implementations (14% less area needed compared to the best solution reported). The total size of the processor is 8,958 GEs for a 0.13 μm CMOS technology and needs 285 kcycles for a point multiplication. It shows that the proposed solution is well suitable for low-power designs by providing a power consumption of only 3.2 μW at 100 kHz.

Keywords

Low-Resource Hardware Implementation Elliptic Curve Cryptography Binary Extension Field Embedded Systems 

References

  1. 1.
    Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC (2005)Google Scholar
  2. 2.
    Batina, L., Mentens, N., Sakiyama, K., Preneel, B., Verbauwhede, I.: Low-Cost Elliptic Curve Cryptography for Wireless Sensor Networks. In: Buttyán, L., Gligor, V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 6–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. London Mathematical Society Lecture Notes Series, vol. 265. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  4. 4.
    Bock, H., Braun, M., Dichtl, M., Hess, E., Heyszl, J., Kargl, W., Koroschetz, H., Meyer, B., Seuschek, H.: A Milestone Towards RFID Products Offering Asymmetric Authentication Based on Elliptic Curve Cryptography. Invited talk at RFIDsec 2008 (July 2008)Google Scholar
  5. 5.
    Cadence Design Systems. The Cadence Design Systems Website, http://www.cadence.com/
  6. 6.
    Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    de Rooij, P.: Efficient Exponentiation Using Precomputation and Vector Addition Chains. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 389–399. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Ebeid, N., Lambert, R.: Securing the Elliptic Curve Montgomery Ladder Against Fault Attacks. In: Proceedings of Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC 2009, Lausanne, Switzerland, pp. 46–50 (September 2009)Google Scholar
  9. 9.
    Eberle, H., Gura, N., Shantz, S.C., Gupta, V., Rarick, L.: A Public-key Cryptographic Processor for RSA and ECC. In: Proceedings of the 15th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2004), pp. 98–110. IEEE Computer Society (September 2004)Google Scholar
  10. 10.
    El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  11. 11.
    Fan, J., Guo, X., Mulder, E.D., Schaumont, P., Preneel, B., Verbauwhede, I.: State-of-the-Art of Secure ECC Implementations: A Survey on known Side-Channel Attacks and Countermeasures. In: Proceedings of 3rd IEEE International Symposium Hardware-Oriented Security and Trust - HOST 2010, California, USA, June 13-14, pp. 76–87. IEEE (2010)Google Scholar
  12. 12.
    Faraday Technology Corporation. Faraday FSA0A_C 0.18 μm ASIC Standard Cell Library (2004), http://www.faraday-tech.com
  13. 13.
    Fürbass, F., Wolkerstorfer, J.: ECC Processor with Low Die Size for RFID Applications. In: Proceedings of 2007 IEEE International Symposium on Circuits and Systems. IEEE (May 2007)Google Scholar
  14. 14.
    Großschädl, J.: Full-Custom VLSI Design of a Unified Multiplier for Elliptic Curve Cryptography on RFID Tags. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 366–382. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Großschädl, J., Kamendje, G.-A.: Optimized RISC Architecture for Multiple-Precision Modular Arithmetic. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) SPC 2008. LNCS, vol. 2802, pp. 253–270. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)MATHGoogle Scholar
  17. 17.
    Hein, D., Wolkerstorfer, J., Felber, N.: ECC Is Ready for RFID – A Proof in Silicon. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 401–413. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Hutter, M., Feldhofer, M., Plos, T.: An ECDSA Processor for RFID Authentication. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 189–202. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Itoh, T., Tsujii, S.: Effective recursive algorithm for computing multiplicative inverses in GF(2m). Electronic Letters 24(6), 334–335 (1988)CrossRefMATHGoogle Scholar
  21. 21.
    Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Kaliski, B.: The Montgomery Inverse and its Applications. IEEE Transactions on Computers 44(8), 1064–1065 (1995)CrossRefMATHGoogle Scholar
  23. 23.
    Koblitz, N.: A Course in Number Theory and Cryptography. Springer, Heidelberg (1994) ISBN 0-387-94293-9CrossRefMATHGoogle Scholar
  24. 24.
    Koç, Ç.K., Acar, T., Kaliski Jr., B.S.: Analyzing and Comparing Montgomery Multiplication Algorithms. IEEE Micro 16(3), 26–33 (1996)CrossRefGoogle Scholar
  25. 25.
    Kumar, S.S., Paar, C.: Are standards compliant Elliptic Curve Cryptosystems feasible on RFID? In: Workshop on RFID Security 2006 (RFIDSec 2006), Graz, Austria, July 12-14 (2006)Google Scholar
  26. 26.
    Lee, Y.K., Sakiyama, K., Batina, L., Verbauwhede, I.: Elliptic-Curve-Based Security Processor for RFID. IEEE Transactions on Computers 57(11), 1514–1527 (2008)CrossRefMathSciNetGoogle Scholar
  27. 27.
    López, J., Dahab, R.: Fast Multiplication on Elliptic Curves over GF(2m) without Precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  28. 28.
    Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factorization. Mathematics of Computation 48(177), 243–264 (1987) ISSN 0025-5718CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    National Institute of Standards and Technology (NIST). FIPS-180-3: Secure Hash Standard (October 2008), http://www.itl.nist.gov/fipspubs/
  30. 30.
    National Institute of Standards and Technology (NIST). FIPS-186-3: Digital Signature Standard, DSS (2009), http://www.itl.nist.gov/fipspubs/
  31. 31.
    Öztürk, E., Sunar, B., Savaş, E.: Low-Power Elliptic Curve Cryptography Using Scaled Modular Arithmetic. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 92–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Sakiyama, K., Batina, L., Mentens, N., Preneel, B., Verbauwhede, I.: Small-footprint ALU for public-key processors for pervasive security. In: Workshop on RFID Security 2006 (RFIDSec 2006), Graz, Austria, July 12-14 (2006)Google Scholar
  33. 33.
    Tillich, S., Großschädl, J.: VLSI Implementation of a Functional Unit to Accelerate ECC and AES on 32-Bit Processors. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 40–54. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Wenger, E., Feldhofer, M., Felber, N.: Low-Resource Hardware Design of an Elliptic Curve Processor for Contactless Devices. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 92–106. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  35. 35.
    Wolkerstorfer, J.: Is Elliptic-Curve Cryptography Suitable for Small Devices? In: Workshop on RFID and Lightweight Crypto, Graz, Austria, July 13-15, pp. 78–91 (2005)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Erich Wenger
    • 1
  • Michael Hutter
    • 1
  1. 1.Institute for Applied Information Processing and Communications (IAIK)Graz University of TechnologyGrazAustria

Personalised recommendations