TIMENmes: An Iron Nitride Complex

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Coordination compounds of iron in high oxidation states have been invoked as reactive intermediates in biocatalyses. Iron(IV) ferryl species are examples of highly reactive compounds that have long been known to be at the catalytic centers of oxygenases. Supported by X-ray diffraction studies on nitrogenase, the iron nitride moiety has recently been suggested to be present at the site of biological nitrogen reduction. As a result, well-characterized high-valent iron complexes have been sought as biomimetic models for transformations mediated by iron-containing enzymes. To gain understanding of iron nitride reactivity and the possible role of such species in biocatalysis, insight into the molecular and electronic structure of complexes stabilizing the [FeN] synthon is highly desirable. Whereas significant progress has been made in the synthesis and spectroscopic elucidation of Fe=NR and Fe?N species, X-ray crystallographic characterization of a complex with a terminal Fe?N functionality has not been accomplished. The first mononuclear Fe(IV)=O entity crystallographically characterized was stabilized in an octahedral environment provided by a macrocyclic tetra-N-methylated cyclam ligand. Similar cyclam derivatives also allow the stabilization and detailed spectroscopic characterization of octahedral Fe(V) and Fe(VI) nitride complexes in unusually high oxidation states. Recently, Peters and Betley developed a stunningly redox-rich iron system employing the tripodal tris(phosphino)borate ligand system (PhBRP3 ?), which stabilizes tetrahedral L3Fe=Nx species in oxidation states ranging from +I to +IV. Remarkably, this ligand system enabled the first room-temperature spectroscopic characterization of a terminal Fe(IV) nitride species. Concentration-dependent coupling to the Fe(I)–N2–Fe(I) dinuclear product, however, prevents crystallization of this nitride species.

Keywords

Isomer Shift Iron Center Quadrupole Doublet Iron Nitride Sodium Tetraphenylborate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

Text, schemes, and figures of this chapter, in part, are reprints of the materials published in Vogel et al. [38]. The dissertation author was the primary researcher and author. The co-authors listed in the publication also participated in the research. The permission to reproduce the paper was granted by Wiley-VCH Verlag GmbH & Co. KGaA. Copyright 2008, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

References

  1. 1.
    J.T. Groves, J. Inorg. Biochem. 100, 434 (2006)CrossRefGoogle Scholar
  2. 2.
    O. Einsle, F.A. Tezcan, S.L.A. Andrade, B. Schmid, M. Yoshida, J.B. Howard, D.C. Rees, Science 297, 1696 (2002)CrossRefGoogle Scholar
  3. 3.
    M.P. Hendrich, W. Gunderson, R.K. Behan, M.T. Green, M.P. Mehn, T.A. Betley, C.C. Lu, J.C. Peters, Proc. Natl. Acad. Sci. 103, 17107 (2006)CrossRefGoogle Scholar
  4. 4.
    J.F. Berry, E. Bill, E. Bothe, S.D. George, B. Mienert, F. Neese, K. Wieghardt, Science 312, 1937 (2006)CrossRefGoogle Scholar
  5. 5.
    N. Aliaga-Alcalde, S. DeBeer George, B. Mienert, E. Bill, K. Wieghardt, F. Neese, Angew. Chem. Int. Ed., 44, 2908 ( 2005)Google Scholar
  6. 6.
    M.P. Mehn, J.C. Peters, J. Inorg. Biochem. 100, 634 (2006)CrossRefGoogle Scholar
  7. 7.
    K. Meyer, J. Bendix, N. Metzler-Nolte, T. Weyhermüller, K. Wieghardt, J. Am. Chem. Soc. 120, 7260 (1998)CrossRefGoogle Scholar
  8. 8.
    K. Meyer, E. Bill, B. Mienert, T. Weyhermüller, K. Wieghardt, J. Am. Chem. Soc. 121, 4859 (1999)CrossRefGoogle Scholar
  9. 9.
    M. Schlangen, J. Neugebauer, M. Reiher, D. Schröder, J.P. López, M. Haryono, F.W. Heinemann, A. Grohmann, H. Schwarz, J. Am. Chem. Soc. 130, 4285 (2008)CrossRefGoogle Scholar
  10. 10.
    C.A. Grapperhaus, B. Mienert, E. Bill, T. Weyhermüller, K. Wieghardt, Inorg. Chem. 39, 5306 (2000)CrossRefGoogle Scholar
  11. 11.
    T.A. Betley, J.C. Peters, J. Am. Chem. Soc. 126, 6252 (2004)CrossRefGoogle Scholar
  12. 12.
    J.-U. Rohde, T.A. Betley, T.A. Jackson, C.T. Saouma, J.C. Peters, L. Que, Inorg. Chem. 46, 5720 (2007)CrossRefGoogle Scholar
  13. 13.
    J.-U. Rohde, J.-H. In, M.H. Lim, W.W. Brennessel, M.R. Bukowski, A. Stubna, E. Münck, W. Nam, L. Que, Science 299, 1037 (2003)CrossRefGoogle Scholar
  14. 14.
    X. Hu, K. Meyer, J. Organomet. Chem. 690, 5474 (2005)CrossRefGoogle Scholar
  15. 15.
    A.J. Arduengo III, PCT Int. Appl. WO 9117983 (du Pont de Nemours, E. I., and Co., USA) A1, 18 (1991)Google Scholar
  16. 16.
    K. Ward Jr., J. Am. Chem. Soc. 57, 914 (1935)CrossRefGoogle Scholar
  17. 17.
    N.N. Greenwood, T.C. Gibbs, Mössbauer Spectroscopy (Chapman and Hall Ltd., London, 1971)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    K. Koch, K. Koepernik, D.V. Neck, H. Rosner, S. Cottenier, Phys. Rev. A, 81, 032507 (2010)Google Scholar
  20. 20.
    P. Gütlich, Chemie in unserer Zeit 5, 131 (1971)CrossRefGoogle Scholar
  21. 21.
    P. Gütlich, Chemie in unserer Zeit 4, 133 (1970)CrossRefGoogle Scholar
  22. 22.
    I. Castro-Rodríguez, H. Nakai, K. Meyer, Angew. Chem. 118, 2449 (2006)CrossRefGoogle Scholar
  23. 23.
    T. Birk, J. Bendix, Inorg. Chem. 42, 7608 (2003)CrossRefGoogle Scholar
  24. 24.
    J. Bendix, R.J. Deeth, T. Weyhermüller, E. Bill, K. Wieghardt, Inorg. Chem. 39, 930 (2000)CrossRefGoogle Scholar
  25. 25.
    J. Bendix, K. Meyer, T. Weyhermüller, E. Bill, N. Metzler-Nolte, K. Wieghardt, Inorg. Chem. 37, 1767 (1998)CrossRefGoogle Scholar
  26. 26.
    J. Bendix, J. Am. Chem. Soc. 125, 13348 (2003)CrossRefGoogle Scholar
  27. 27.
    X. Hu, K. Meyer, J. Am. Chem. Soc. 126, 16322 (2004)CrossRefGoogle Scholar
  28. 28.
    R.O. Lindsay, C.F.H. Allen, Org. Synth. 22, 96 (1942)CrossRefGoogle Scholar
  29. 29.
    F. Neese, QCPE Bull. 15, 5 (1995)Google Scholar
  30. 30.
    F. Neese, ORCA—An Ab Initio, Density Functional and Semiempirical Program Package, version 2.6.04; Institut für Physikalische und Theoretische Chemie, Universität Bonn, Germany (2007)Google Scholar
  31. 31.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  32. 32.
    C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  33. 33.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)CrossRefGoogle Scholar
  34. 34.
    A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992)CrossRefGoogle Scholar
  35. 35.
    A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994)CrossRefGoogle Scholar
  36. 36.
    SADABS 2.06 (Bruker AXS Inc., Madison, 2002)Google Scholar
  37. 37.
    SHELXTL NT 6.12 (Bruker AXS Inc., Madison, 2002)Google Scholar
  38. 38.
    C. Vogel, F.W. Heinemann, J. Sutter, C. Anthon, K. Meyer, Angewandte Chemie, Int Ed 47, 2681 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemistry and Pharmacy, Inorganic ChemistryFriedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations