Advertisement

Combination of Decision Support System (DSS) for Remote Healthcare Monitoring Using a Multi-agent Approach

  • Mohamed Achraf Dhouib
  • Lamine Bougueroua
  • Katarzyna Węgrzyn-Wolska
Part of the Communications in Computer and Information Science book series (CCIS, volume 245)

Abstract

This research is in the field of remote healthcare monitoring systems which propose software solutions to monitor elderly people in their own homes. Our objective is to take advantage of the technological diversity of several Decision Support Systems used to detect distress situations. We propose a multi-agent approach in which each agent encapsulates a decision support system. This encapsulation enables the real-time combination of decisions. In this paper, we present the architecture of our multi-agent system and the real-time scheduling of the collective decision process.

Keywords

multi-agent system decision support system collective decision real-time scheduling remote healthcare monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McMorrow, K., Roeger, W.: The economic and financial Market Consequences of global Ageing. Springer, Berlin (2004)CrossRefGoogle Scholar
  2. 2.
    Rammal, A., Trouilhet, S., Singer, N., Pécatte, J.M.: An adaptative System for Home monitoring Using a Multiagent Classification of Patterns. International Journal of Telemedcine and Application 2008 (March 2008)Google Scholar
  3. 3.
    Souidene, W., Istrate, D., Medjahed, H., Boudy, J., Baldinger, J.L., Belfeki, I., Delavault, F.: Une plateforme multimodale pour la télévigilance médicale. In: 4th ws AMINA, Tunis (2008)Google Scholar
  4. 4.
    Mazuel, L., Sabouret, N.: Un modèle d’interaction pour des agents sémantiquement hétérogène. In: Lip6, 16eme Journées Francophone Sur Les Systèmes Multi-Agents, Brest (2008)Google Scholar
  5. 5.
    Dokovsky, N.T., Van Halteren, A.T., Widya, I.A.: BANip: Enabling Remote Healthcare Monitoring with Body Area Networks. In: FIDJI International Workshop on Scientific Engineering of Distributed Java Applications, Luxembourg, pp. 27–28 (November 2003)Google Scholar
  6. 6.
  7. 7.
    El Fallah Seghrouchni, A., Briot, J.P.: Technologies des systèmes multi-agents et applications industrielles, Lavoisier (2009)Google Scholar
  8. 8.
    Dennet, D.C.: The intentional Stance. MIT Press, Cambridge (1987)Google Scholar
  9. 9.
    Rao, A.A., Georgeff, M.P.: An abstract architecture for rational agents. In: Nebel, N., Rich, C., Swartout, W. (eds.) KR-1992, pp. 439–449. Morgan Kaufmann, San Francisco (1992)Google Scholar
  10. 10.
    Rao, A.A., Georgeff, M.P.: A model-theoretical approach to the verification of situated reasoning systems. In: Bajcsy, R. (ed.) IJICAI 1993, pp. 318–324. Morgan Kaufmann, San Francisco (1993)Google Scholar
  11. 11.
    Wooldridge, M., Jennungs, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)CrossRefGoogle Scholar
  12. 12.
    Julian, V., Botti, V.: Developing real-time multi-agent systems. Integr. Comput.-Aided Eng. 11(2), 135–149 (2004)Google Scholar
  13. 13.
    George, L., Rivierre, N., Spuri, M.: Preemptive and non-preemptive real-time uniprocessor scheduling. INRIA, research Report 2966 (September 1996)Google Scholar
  14. 14.
    Lehoczky, J.P.: Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: Proc. 11th IEEE Real-Time Systems Symposium, FL, USA, December 5-7, pp. 201–209 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohamed Achraf Dhouib
    • 1
  • Lamine Bougueroua
    • 1
  • Katarzyna Węgrzyn-Wolska
    • 1
  1. 1.EsigetelAvonFrance

Personalised recommendations