Introduction

  • Xiao-Yu Sun
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Organic peroxides are compounds containing an O–O bond. The O–O group is called the peroxide group. The peroxide bond is one of the weakest bonds in organic molecules, with BDE of approximately 34 kcal/mol (C–C: 81 kcal/mol, C–H: 98 kcal/mol, C–O: 79 kcal/mol, C–N: 66 kcal/mol). The O–O bond is unstable and easily splits into reactive radicals via homolytic cleavage. For this reason, peroxides are found in nature only in small quantities, in water, atmosphere, plants, animals and man. According to the substitution patterns, organic peroxides can be classified into hydroperoxides, acyclic dialkyl peroxide and cyclic peroxides.

Keywords

Singlet Oxygen Great Barrier Reef Marine Sponge Antimalarial Activity Bond Dissociation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baldwin AC (1983) In: Patai S (ed) The chemistry of peroxides, vol 1. Wiley, Chichester, pp 97–104Google Scholar
  2. 2.
    Bach RD, Ayala PY, Schlegel HB (1996) J Am Chem Soc 118:12758–12765CrossRefGoogle Scholar
  3. 3.
    Nelson EK (1911) J Am Chem Soc 33:1404–1412CrossRefGoogle Scholar
  4. 4.
    Sachs J, Malaney P (2002) Nature 415:680–685CrossRefGoogle Scholar
  5. 5.
    Liang XT, Yu DQ, Wu WL, Deng HC (1979) Acta Chim Sin 37:215–230Google Scholar
  6. 6.
    Zhang L, Zhou WS, Xu XX (1988) J Chem Soc, Chem Commun 523–524Google Scholar
  7. 7.
    Liu JM, Ni MY, Fan YF, Tu YY, Wu YL, Chou WS (1979) Acta Chim Sin 37:129–141Google Scholar
  8. 8.
    Wu YK (2002) Acc Chem Res 35:255–259CrossRefGoogle Scholar
  9. 9.
    Well RJ (1976) Tet Lett 17:2637–2678CrossRefGoogle Scholar
  10. 10.
    Sakemi S, Higa T, Anthoni U, Christophersen C (1987) Tetrahedron 43:263–268CrossRefGoogle Scholar
  11. 11.
    de Guzman FS, Schmitz FJ (1990) J Nat Prod 53:926–931CrossRefGoogle Scholar
  12. 12.
    Murayama T, Ohizumi Y, Nakamura H, Sasaki T, Kobayashi J (1989) Experientia 45:898–905CrossRefGoogle Scholar
  13. 13.
    Kobayashi J, Murayama T, Oizumi Y. Jpn, Kokai Tokkyo Koho JP 02, 229, 185 [90. 229. 185], 1990 (Chem Abstr 1991, 114, 49563x)Google Scholar
  14. 14.
    Rudi A, Kashman Y (1993) J Nat Prod 56:1827–1830CrossRefGoogle Scholar
  15. 15.
    Casteel DA (1992) Nat Prod Rep 9:289–312CrossRefGoogle Scholar
  16. 16.
    Faulkner DJ (1984) Nat Prod Rep 1:251–255CrossRefGoogle Scholar
  17. 17.
    Davidson BD (1991) J Org Chem 56:6722–6724CrossRefGoogle Scholar
  18. 18.
    Patil AD (1988) Chem Abstr 109:17027f. US Pat 4879307, 1989Google Scholar
  19. 19.
    Phillipson DW, Rinehart KL Jr (1983) J Am Chem Soc 105:7735–7736CrossRefGoogle Scholar
  20. 20.
    Horton PA, Longley RE, Kelly-Borges M, McConnell OJ, Ballas LM (1994) J Nat Prod 57:1374–1381CrossRefGoogle Scholar
  21. 21.
    Chen Y, Killday KB, McCarthy PJ, Schimoler R, Chilson K, Selitrennikoff C, Pomponi SA, Wright AE (2001) J Nat Prod 64:262–264CrossRefGoogle Scholar
  22. 22.
    Sandler JS, Colin PL, Hooper JNA, Faulkner DJ (2002) J Nat Prod 65:1258–1261CrossRefGoogle Scholar
  23. 23.
    Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Nature 409:258–268CrossRefGoogle Scholar
  24. 24.
    Rudi A, Afanil R, Gravalos LG, Aknin M, Gaydou E, Vacelet J, Kashman Y (2003) J Nat Prod 66:682–685CrossRefGoogle Scholar
  25. 25.
    For reviews of peroxide natural products, see: Casteel DA (1999) Nat Prod Rep 16:55–73Google Scholar
  26. 26.
    Hamberg M, Samuelsson B (1973) Proc Natl Acad Sci U S A 70:899–903CrossRefGoogle Scholar
  27. 27.
    Nugteren DH, Hazelhof E (1973) Biochim Biophys Acta 326:448–461Google Scholar
  28. 28.
    Hamberg M, Svensson J, Wakabayashi T, Samuelsson B (1974) Proc Natl Acad Sci U S A 71:345–349CrossRefGoogle Scholar
  29. 29.
    Samuelsson B (1965) J Am Chem Soc 87:3011–3013CrossRefGoogle Scholar
  30. 30.
    Hamberg M, Samuelsson B (1967) J Biol Chem 242:5336–5343Google Scholar
  31. 31.
    Nicolaou KC, Gasic GP, Barnette WE (1978) Angew Chem Int Ed Engl 17:293–312CrossRefGoogle Scholar
  32. 32.
    Salomon RG (1985) Acc Chem Res 18:294–301CrossRefGoogle Scholar
  33. 33.
    Ueoka R, Nakao Y, Kawatsu S, Yaegashi J, Matsumoto Y, Matsunaga S, Furihata K, van Soest RWM, Fusetani N (2009) J Org Chem 74:4203–4207CrossRefGoogle Scholar
  34. 34.
    Scott JJ, Oh D-C, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Science 322:63–63CrossRefGoogle Scholar
  35. 35.
    Oh D-C, Scott JJ, Currie CR, Clardy J (2009) Org Lett 11:633–636CrossRefGoogle Scholar
  36. 36.
    Kamchonwongpaisan S, Nilanonta C, Tarnchompoo B, Thebtaranonth C, Thebtaranonth Y, Yuthavong Y, Kongsaeree P, Clardy J (1995) Tet Lett 36:1821–1824CrossRefGoogle Scholar
  37. 37.
    Cole RJ, Kirksey JW, Moore JH, Blankenship BR, Diener UL, Davis NB (1972) Appl Microbiol 24:248–256Google Scholar
  38. 38.
    Fayos J, Lokensgard D, Clardy J, Cole RJ, Kirksey JW (1974) J Am Chem Soc 96:6785–6787CrossRefGoogle Scholar
  39. 39.
    Hayes PY, Kitching W (2002) J Am Chem Soc 124:9718–9719CrossRefGoogle Scholar
  40. 40.
    Rahm F, Hayes PY, Kitching W (2004) Heterocycles 64:523–575CrossRefGoogle Scholar
  41. 41.
    Hayes PY, Chow S, Rahm F, Bernhardt PV, De Voss JJ, Kitching W (2010) J Org Chem 75:6489–6501CrossRefGoogle Scholar
  42. 42.
    Patil AD, Freyer AJ, Bean MF, Carte BK, Westley JW, Johnson RK, Lahouratate P (1996) Tetrahedron 52:377–394CrossRefGoogle Scholar
  43. 43.
    Zhao Q, Wong HNC (2007) Tetrahedron 63:6296–6305CrossRefGoogle Scholar
  44. 44.
    Xie X-G, Wu X-W, Lee H-K, Peng X-S, Wong HNC (2010) Chem Eur J 16:6933–6941CrossRefGoogle Scholar
  45. 45.
    Semmelhack MF, Hooley RJ, Kraml CK (2006) Org Lett 8:5203–5206CrossRefGoogle Scholar
  46. 46.
    McCullough KJ, Nojima M (2001) Curr Org Chem 5:601–636CrossRefGoogle Scholar
  47. 47.
    Korshin EE, Bachi MD (2006) In: Rappoport Z (ed) The chemistry of peroxides, vol 2. Wiley, Chichester, pp 189–305Google Scholar
  48. 48.
    Criegee R, Pauling G (1955) Chem Ber 88:712–715CrossRefGoogle Scholar
  49. 49.
    Rieche A, Bischoff C (1962) Chem Ber 95:77–82CrossRefGoogle Scholar
  50. 50.
    Milas NA, Mageli OL, Golubovic A, Arndt RW, Ho JC (1963) J Am Chem Soc 85:222–226CrossRefGoogle Scholar
  51. 51.
    Porter NA, Funk MO, Gilmore D, Nixon J (1976) J Am Chem Soc 98:6000–6005CrossRefGoogle Scholar
  52. 52.
    Beckwith ALJ, Wagner RD (1980) J Chem Soc Chem Commun 485–486Google Scholar
  53. 53.
    Frankel EN, Weisleder D, Neff WE (1981) J Chem Soc Chem Commun 766–767Google Scholar
  54. 54.
    Courtneidge JL (1992) J Chem Soc Chem Commun 1270–1272Google Scholar
  55. 55.
    Cointeaux L, Berrien J-F, Mayrargue J (2002) Tet Lett 43:6275–6277CrossRefGoogle Scholar
  56. 56.
    Kropf H, von Wallis H (1981) Synthesis 237–240Google Scholar
  57. 57.
    Miura M, Yoshida M, Kusabayashi S (1982) J Chem Soc Chem Commun 397–398Google Scholar
  58. 58.
    Yoshida M, Miura M, Nojima M, Kusabayashi S (1983) J Am Chem Soc 105:6279–6285CrossRefGoogle Scholar
  59. 59.
    Ito T, Tokuyasu T, Masuyama A, Nojima M, McCullough KJ (2003) Tetrahedron 59:525–536CrossRefGoogle Scholar
  60. 60.
    Tokuyasu T, Kunikawa S, McCullough KJ, Masuyama A, Nojima M (2005) J Org Chem 70:251–260CrossRefGoogle Scholar
  61. 61.
    Iesce MR, Cermola F, Guitto A, Scarpati R, Graziano ML (1995) J Org Chem 60:5324–5327CrossRefGoogle Scholar
  62. 62.
    Gbara-Haj-Yahia I, Zvilichovsky G, Seri N (2004) J Org Chem 69:4135–4139CrossRefGoogle Scholar
  63. 63.
    Baumstark AL, Vasquez PC (1992) J Org Chem 57:393–395CrossRefGoogle Scholar
  64. 64.
    Shimizu H, Miyazaki S, Kataoka T, Hori M (1992) J Chem Soc Chem Commun 1586–1587Google Scholar
  65. 65.
    Shimizu H, Miyazaki S, Kataoka T (1996) J Chem Soc Perkin Trans 1 2227–2235Google Scholar
  66. 66.
    Bloodworth AJ, Courtneidge JL (1982) J Chem Soc Perkin Trans 1 1807–1809Google Scholar
  67. 67.
    Bloodworth AJ, Chan KH, Cooksey CJ (1986) J Org Chem 51:2110–2115CrossRefGoogle Scholar
  68. 68.
    Bloodworth AJ, Curtis RJ, Mistry N (1989) J Chem Soc Chem Commun 954–955Google Scholar
  69. 69.
    Bloodworth AJ, Bothwell BD, Collins AN, Maidwell NL (1996) Tet Lett 37:1885–1888CrossRefGoogle Scholar
  70. 70.
    Bascetta E, Gunstone FD (1984) J Chem Soc Perkin Trans 1 2207–2216Google Scholar
  71. 71.
    Ramirez A, Woerpel KA (2005) Org Lett 7:4617–4620CrossRefGoogle Scholar
  72. 72.
    Dussault PH, Liu X-J (1999) Org Lett 1:1391–1393CrossRefGoogle Scholar
  73. 73.
    Dussault PH, Liu X-J (1999) Tet Lett 40:6553–6556CrossRefGoogle Scholar
  74. 74.
    Dussault PH, Lee H-J, Liu X-J (2000) J Chem Soc Perkin Trans 1:3006–3013Google Scholar
  75. 75.
    Dussault PH, Trullinger TK, Cho-Shultz S (2000) Tetrahedron 56:9213–9220CrossRefGoogle Scholar
  76. 76.
    Dussault PH, Lee IQ, Lee H-J, Lee RJ, Niu QJ, Schultz JA, Zope UR (2000) J Org Chem 65:8407–8414CrossRefGoogle Scholar
  77. 77.
    Dussault PH, Xu C-P (2004) Tet Lett 45:7455–7457CrossRefGoogle Scholar
  78. 78.
    Dai P, Dussault PH (2005) Org Lett 7:4333–4335CrossRefGoogle Scholar
  79. 79.
    Dai P, Trullinger TK, Liu X-J, Dussault PH (2006) J Org Chem 71:2283–2292CrossRefGoogle Scholar
  80. 80.
    Dussault PH, Zope UR (1995) J Org Chem 60:8218–8222CrossRefGoogle Scholar
  81. 81.
    Ghorai P, Dussault PH, Hu C (2008) Org Lett 10:2401–2404CrossRefGoogle Scholar
  82. 82.
    Dussault PH, Davies DR (1996) Tet Lett 37:463–466CrossRefGoogle Scholar
  83. 83.
    Feldman KS, Pravez M (1986) J Am Chem Soc 108:1328–1330CrossRefGoogle Scholar
  84. 84.
    Feldman KS, Simpson RE (1989) J Am Chem Soc 111:4878–4886CrossRefGoogle Scholar
  85. 85.
    Feldman KS, Kraebel CM (1992) J Org Chem 57:4574–4576CrossRefGoogle Scholar
  86. 86.
    Weinreb CK, Hartsough D, Feldman KS (1995) Tet Lett 36:6859–6862Google Scholar
  87. 87.
    Corey EJ, Nicolaou KC, Shibasaki M, Machida Y, Shiner CS (1975) Tet Lett 37:3183–3186CrossRefGoogle Scholar
  88. 88.
    Adam W, Birke A, Cádiz BC, Diaz S, Rodriquez A (1978) J Org Chem 43:1154–1158CrossRefGoogle Scholar
  89. 89.
    Porter NA, Mitchell JC (1983) Tet Lett 24:543–546CrossRefGoogle Scholar
  90. 90.
    Baumstark AL, Vasquez PC (1992) J Org Chem 57:393–395CrossRefGoogle Scholar
  91. 91.
    Payne GB (1958) J Org Chem 23:310–311CrossRefGoogle Scholar
  92. 92.
    Cativiela C, Figueras F, Fraile JM, Garcia JI, Mayoral JA (1995) Tet Lett 36:4125–4128CrossRefGoogle Scholar
  93. 93.
    Reisinger CM, Wang X, List B (2008) Angew Chem Int Ed 47:8112–8115CrossRefGoogle Scholar
  94. 94.
    Porter NA, Funk MO, Gilmore D, Isaac R, Nixon J (1976) J Am Chem Soc 98:6000–6005CrossRefGoogle Scholar
  95. 95.
    Schweitzer C, Schmidt R (2003) Chem Rev 103:1685–1757CrossRefGoogle Scholar
  96. 96.
    Wilkinson F, Helman WP, Ross AB (1995) J Phys Chem Ref Data 24:663–677CrossRefGoogle Scholar
  97. 97.
    Windaus A, Brunken J (1928) Annalen 460:225–235Google Scholar
  98. 98.
    Zhou X, Kitamura M, Shen B, Nakajima K, Takahashi T (2004) Chem Lett 33:410–411CrossRefGoogle Scholar
  99. 99.
    Nicolaou KC, Gunzner JL, Shi GQ, Agrios KA, Gartner P, Yang Z (1999) Chem Eur J 5:646–658CrossRefGoogle Scholar
  100. 100.
    Nicolaou KC, Wallace PA, Shi SH, Ouellette MA, Bunnage ME, Gunzner JL, Agrios KA, Shi GQ, Gartner P, Yang Z (1999) Chem Eur J 5:618–627CrossRefGoogle Scholar
  101. 101.
    Xu XX, Dong HQ (1995) J Org Chem 60:3039–3044CrossRefGoogle Scholar
  102. 102.
    Porter NA, Byers JD, Mebane RC, Gilmore DW, Nixon JR (1978) J Org Chem 43:2088–2090CrossRefGoogle Scholar
  103. 103.
    Porter NA, Byers JD, Holden KM, Menzel DB (1979) J Am Chem Soc 101:4319–4322CrossRefGoogle Scholar
  104. 104.
    Porter NA, Byers JD, Ali AE, Eling TE (1980) J Am Chem Soc 102:1183–1184CrossRefGoogle Scholar
  105. 105.
    Dussault PH, Woller KR (1997) J Am Chem Soc 119:3824–3825CrossRefGoogle Scholar
  106. 106.
    Dussault PH, Eary CT, Woller KR (1999) J Org Chem 64:1789–1797CrossRefGoogle Scholar
  107. 107.
    Jung M, Ham J, Song J (2002) Org Lett 4:2763–2765CrossRefGoogle Scholar
  108. 108.
    Chen Y, McCarthy PJ, Harmody DK, Schimoler-O'Rourke R, Chilson K, Selitrennikoff C, Pomponi SA, Wright AE (2002) J Nat Prod 65:1509–1512CrossRefGoogle Scholar
  109. 109.
    Zhao Q (2006) Shanghai institute of organic chemistry. Thesis, The Chinese Academy of ScienceGoogle Scholar
  110. 110.
    Johnson RA, Nidy EG, Baczynskyj L, Gorman RR (1977) J Am Chem Soc 99:7738–7740CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Xiao-Yu Sun
    • 1
  1. 1.Laboratory of Organic ChemistryETH ZürichZürichSwitzerland

Personalised recommendations