Enhanced Fuzzy-Based Models for ROI Extraction in Medical Images

  • Yasser El-Sonbaty
  • Sherin M. Youssef
  • Karma M. Fathalla
Part of the Communications in Computer and Information Science book series (CCIS, volume 260)

Abstract

Standard Fuzzy C-Means (FCM) clustering has been widely used as an effective method for image segmentation. However, FCM is sensitive to initialization and is easily trapped in local optima. In this paper, several enhanced models for FCM clustering were proposed, namely W_SS_FCM, LAWS_SS_FCM and H_FCM, to promote the performance of standard FCM. The proposed algorithms merge partial supervision with spatial locality to increase conventional FCM’s robustness. A comparison study was conducted to validate the proposed methods’ performance applying well established measures on three datasets. Experimental results show considerable improvement over standard FCM and other variants of the algorithm. It also manifests high robustness against noise attacks.

Keywords

FCM clustering segmentation spatial locality partial supervision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefMATHGoogle Scholar
  2. 2.
    Youssef, S.M., Rizk, M., El-Sherif, M.: Dynamically Adaptive Data Clustering using Intelligent Swarm-like Agents. International Journal of Mathematics and Computing 1, 108–118 (2007)Google Scholar
  3. 3.
    Likas, A., Vlassis, N., Verbeek, J.J.: The Global k-means Clustering Algorithm. Pattern Recognition 36, 451–461 (2003)CrossRefGoogle Scholar
  4. 4.
    Yang, M.-S., Wu, K.-l.: A Similarity-based Robust Clustering Method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 434–448 (2004)CrossRefGoogle Scholar
  5. 5.
    Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A Modified Fuzzy C-means Algorithm for Bias Field Estimation and Segmentation of MRI Data. IEEE Transactions on Medical Imaging 21, 193–199 (2002)CrossRefGoogle Scholar
  6. 6.
    Chen, S.C., Zhang, D.Q.: Robust Image Segmentation using FCM with Spatial Constraints Based on New Kernel-Induced Distance Measure. IEEE Transactions on Systems, Man and Cybernetics 34, 1907–1916 (2004)CrossRefGoogle Scholar
  7. 7.
    Szilagyi, L., Benyo, Z., Szilagyi, S.M., Adam, H.S.: MR Brain Image Segmentation Using an Enhanced Fuzzy C-Means Algorithm. In: 25th International Conference of IEEE EMBS, pp. 17–21 (2003)Google Scholar
  8. 8.
    Cai, W., Chen, S., Zhang, D.: Fast and Robust Fuzzy C-means Clustering Algorithms Incorporating Local Information for Image Segmentation. Pattern Recognition 40, 825–838 (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Bensaid, A.M., Hall, L.O., Bezdek, J.C., Clarke, L.P.: Partially Supervised Clustering for Image Segmentation. Pattern Recognition 29, 859–871 (1996)CrossRefGoogle Scholar
  10. 10.
    Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  11. 11.
    Laws, K.I.: Textured image segmentation. University of Southern California, Los Angles, California (1980)Google Scholar
  12. 12.
    Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., Chen, T.-J.: Fuzzy c-means Clustering with Spatial Information for Image Segmentation. Computerized Medical Imaging and Graphics 30, 9–15 (2006)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Aubert-Broche, B., Evans, A.C., Collins, L.: A new improved version of the realistic digital brain phantom. NeuroImage 32, 138–145 (2006)CrossRefGoogle Scholar
  15. 15.
    Aubert-Broche, B., Griffin, M., Pike, G.B., Evans, A.C., Collins, D.L.: Twenty New Digital Brain Phantoms for Creation of Validation Image Databases. IEEE Transaction on Medical Imaging 25, 1410–1416 (2006)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Xie, X.L., Beni, G.A.: Validity Measure for Fuzzy Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 841–847 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yasser El-Sonbaty
    • 1
  • Sherin M. Youssef
    • 2
  • Karma M. Fathalla
    • 2
  1. 1.College of Computing and ITArab Academy for Science and TechnologyEgypt
  2. 2.College of EngineeringArab Academy for Science and TechnologyEgypt

Personalised recommendations