Deformation Processes

  • Uwe-Jens Görke
  • Norihiro Watanabe
  • Joshua Taron
  • Wenqing Wang
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 86)

Abstract

This chapter is dedicated to the analysis of pure deformation processes in solid continua. Within the context of porous media mechanics, the generalized local momentum balance (2.100) discussed in Sect. 2.5.1 serves as the governing equation describing mechanical deformation. In fact, the specific expression of the momentum balance (2.100) defines the equilibrium conditions in porous media here, considering swelling and thermal stresses caused by the coupling of mechanical to other physical and chemical processes. The effective stress principle has been established in order to define the stress state in the solid skeleton of porous media (cf. Sect. 2.5.1). Within this context, σeff indicates the stress tensor applied to a substitute continuum representing the solid skeleton smeared over the volume of the porous medium under consideration, and being characterized by a reduced partial density compared to the material density of the solid skeleton.

Keywords

Rock Salt Stationary Creep Solid Skeleton Transient Creep Traction Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 131.
    K.-H. Lux. Gebirgsmechanischer Entwurf und Felderfahrungen im Salzkavernenbau: Ein Beitrag zur Entwicklung von Prognosemodellen für den Hohlraumbau im duktilen Salzgebirge. Ferdinand Enke Verlag, Stuttgart, 1984.Google Scholar
  2. 132.
    J. Schröder. Theoretische und algorithmische Konzepte zur phänomenologischen Beschreibung anisotropen Materialverhaltens. Dissertation, Universität Hannover, 1996.Google Scholar
  3. 133.
    M. Kohlmeier. Coupling of thermal, hydraulic and mechanical processes for geotechnical simulations of partially saturated porous media. Dissertation, Universität Hannover, 2006.Google Scholar
  4. 134.
    M. Fiolka. Theorie und Numerik volumetrischer Schalenelemente zur Delaminationsanalyse von Faserverbundlaminaten. Dissertation, Berichte des Instituts für Mechanik 2008/2, 2008.Google Scholar
  5. 135.
    E. Ramm, E. Rank, R. Rannacher, K. Schweizerhol, E. Stein, W. Wendland, G. Wittum, P. Wriggers, and W. Wunderlich. Error-controlled Adaptive Finite Elements in Solid Mechanics. Wiley, England, 2003.Google Scholar
  6. 136.
    I.S. Sandler and J.P. Wright. Strain softening. In S. Nemat, R. Asaro, and G. Hegemier, editors, Theoretical foundations for Large Scale Computations of Nonlinear Behavior, pages 285–315. Matinus Nijhiff, Netherlands, 1984.Google Scholar
  7. 137.
    R. I. Borja. A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation. Computer Methods in Applied Mechanics and Engineering, 190:1529–1549, 2000.Google Scholar
  8. 138.
    D. Sheng, S. W. Sloan, and H. S. Yu. Aspects of finite element implementation of critical state models. Computational Mechanis, 26:185–196, 2000.Google Scholar
  9. 139.
    Z. Hou. Untersuchungen zum Nachweis der Standsicherheit für Untertagedeponien im Salzgebirge. Dissertation, Technische Universität Clausthal, 1997.Google Scholar
  10. 140.
    Z. Hou. Geomechanische Planungskonzepte für untertägige Tragwerke mit besonderer Berücksichtigung von Gefügeschädigung, Verheilung und hydromechanischer Kopplung. Habilitation, Technische Universität Clausthal, 2002.Google Scholar
  11. 141.
    Z. Hou and K.-H. Lux. Ein neues Stoffmodell für duktile Salzgesteine mit Einbeziehung von Gefügeschädigung und tertiärem Kriechen auf der Grundlage der Continuum-Damage-Mechanik. Geotechnik, 21(3):259–263, 1998.Google Scholar
  12. 142.
    U. Hunsche and O. Schulze. Das kriechverhalten von steinsalz. Kali und Steinsalz, 11:238–255, 1994.Google Scholar
  13. 143.
    U. Gabbert, A. Honecker, H. Köppe, and H. Nipp. Numerical analysis of large geomechanical systems in civil engineering by the dynamic relaxation technique. In P.J. Pahl and H. Werner, editors, Computing in Civil and Building Engineering, pages 1275–1281. A.A. Balkema Publishers, Rotterdam, 1995.Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Uwe-Jens Görke
    • 1
  • Norihiro Watanabe
    • 2
  • Joshua Taron
    • 1
  • Wenqing Wang
    • 1
  1. 1.Department of Environmental InformaticsHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
  2. 2.Department of Environmental Informatics, Helmholtz Centre for Environmental Research (UFZ)Technische Universität Dresden (TUD)LeipzigGermany

Personalised recommendations