Solution of Economic Load Dispatch Problem Using Lbest-Particle Swarm Optimization with Dynamically Varying Sub-swarms

  • Hamim Zafar
  • Arkabandhu Chowdhury
  • Bijaya Ketan Panigrahi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7076)

Abstract

This article presents an efficient optimization approach to solve constrained Economic Load Dispatch (ELD) problem using a ‘Lbest-Particle Swarm Optimization with Dynamically Varying Sub-swarms’ (LPSO-DVS). The proposed method is found to give optimal results while working with constraints in the ELD, arising due to practical limitations like dynamic operation constraints (ramp rate limits) and prohibited zones and also accounts valve point loadings. Simulations performed over various systems with different number of generating units with the proposed method have been compared with other existing relevant approaches. Experimental results support the claim of proficiency of the method over other existing techniques in terms of robustness, fast convergence and, most importantly its optimal search behavior.

Keywords

Particle Swarm Optimization Particle Swarm Optimization Algorithm Bacterial Forage Optimisation Genetic Algorithm Solution Economic Load Dispatch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wood, A.J., Wollenberg, B.F.: Power generation, operation and control. John Wiley & Sons, New York (1984)Google Scholar
  2. 2.
    Chen, C.L., Wang, S.C.: Branch and bound scheduling for thermal generating units. IEEE Trans. Energy Convers 8(2), 184–189 (1993)CrossRefGoogle Scholar
  3. 3.
    Yang, H.T., Yang, P.C., Huang, C.L.: Evolutionary Programming based economic dispatch for units with non-smooth fuel cost functions. IEEE Trans. Power Syst. 11(1), 112–118 (1996)CrossRefGoogle Scholar
  4. 4.
    Wong, K.P., Fung, C.C.: Simulated annealing based economic dispatch algorithm. Proc. Inst. Elect. Eng. C., Gen., Transm., Distrib. 140(6), 505–519 (1993)Google Scholar
  5. 5.
    Walter, D.C., Sheble, G.B.: Genetic algorithm solution of economic dispatch with valve-point loading. IEEE Trans. Power Syst. 8(3), 1125–1132 (1993)Google Scholar
  6. 6.
    Coelho, L.S., Mariani, V.C.: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Trans. Power Syst. 21(2), 989–996 (2006)CrossRefGoogle Scholar
  7. 7.
    Park, J.B., Lee, K.S., Shin, J.R., Lee, K.Y.: Aparticle swarm optimization for economic dispatch with non-smooth cost functions. IEEE Trans. Power Syst. 20(1), 34–42 (2005)CrossRefGoogle Scholar
  8. 8.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of the Sixth Int. Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)Google Scholar
  9. 9.
    Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarmoptimizer. In: Proc. Swarm Intell. Symp., pp. 124–129 (June 2005)Google Scholar
  10. 10.
    Clerc, M., Kennedy, J.: The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  11. 11.
    Walter, D.C., Sheble, G.B.: Genetic algorithm solution of economic dispatch with valve-point loading. IEEE Trans. Power Syst. 8(3), 1125–1132 (1993)Google Scholar
  12. 12.
    Park, J.B., Lee, K.S., Shin, J.R., Lee, K.Y.: A particle swarm optimization for economic dispatch with non-smooth cost functions. IEEE Trans. Power Syst. 20(1), 34–42 (2005)CrossRefGoogle Scholar
  13. 13.
    Immanuel Selvakumar, A., Thanushkodi, K.: A new particle swarm optimization solution to nonconvex economic dispatch problems. IEEE Trans. Power Syst. 22(1), 42–51 (2007)CrossRefGoogle Scholar
  14. 14.
    Jiejin, C., Xiaoqian, M., Lixiang, L., Haipeng, P.: Chaotic particle swarm optimization for economic dispatch considering the generator constraints. Energy Convers Manage. 48, 645–653 (2007)CrossRefGoogle Scholar
  15. 15.
    Bhattacharya, A., Chattopadhyay, P.K.: Biogeography-Based optimization for different economic load dispatch problems. IEEE Trans. Power Syst. 25(2), 1064–1077 (2010)CrossRefGoogle Scholar
  16. 16.
    Chaturvedi, K.T., Pandit, M., Srivastava, L.: Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch problems. IEEE Trans. Power Syst. 23(3), 1079 (2008)CrossRefGoogle Scholar
  17. 17.
    Panigrahi, B.K., Ravikumar Pandi, V.: Bacterial foraging optimisation: Nelder–Mead hybrid algorithm for economic load dispatch. IET Gen. Trans. & Distrib. (September 2007)Google Scholar
  18. 18.
    Sinha, N., Chakrabarti, R., Chattopadhyay, P.K.: Evolutionary programming techniques for economic load dispatch. IEEE Trans. Evol. Comput. 7(1), 83–94 (2003)CrossRefGoogle Scholar
  19. 19.
    Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)CrossRefGoogle Scholar
  20. 20.
    Meng, K.: Research of fuzzy self-adaptive immune algorithm and its application, M. E thesis, east China Univ. Sci. Technol., Shanghai, China (2007)Google Scholar
  21. 21.
    Ning, Z.G., Meng, K., Yan, X.F., Qian, F.: An improved particle swarm algorithm and its application in soft sensor modeling. J. East China Univ. Sci. Technol. 33(3), 400–404 (2007)Google Scholar
  22. 22.
    Meng, K., Wang, H.G., Dong, Z.Y.: Quantum-inspired particle swarm optimization for valve-point economic load dispatch. IEEE Trans. Power Syst. 25(1), 215–222 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hamim Zafar
    • 1
  • Arkabandhu Chowdhury
    • 1
  • Bijaya Ketan Panigrahi
    • 2
  1. 1.Dept. of Electronics and Telecommunication Engg.Jadavpur UniversityKolkataIndia
  2. 2.Senior Member, IEEE, Dept. of Electrical EngineeringIIT DelhiNew DelhiIndia

Personalised recommendations