Advertisement

An Efficient Algorithm for Multi-focus Image Fusion Using PSO-ICA

  • Sanjay Agrawal
  • Rutuparna Panda
  • Lingaraj Dora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7076)

Abstract

A pixel-level multi-focus image fusion scheme using Independent Component Analysis (ICA) and Particle Swarm Optimization (PSO) is proposed in this paper. The novelty in this work is optimization of ICA bases using PSO and its application to multi-focus image fusion, which is not found in the literature. The idea is to divide the input registered images into patches and get the independent components using ICA transform. The images are then fused in the transform domain using pixel-based fusion rules. PSO is used to optimize the independent components in ICA. We observe that the proposed method outperforms the existing fusion techniques using ICA.

Keywords

Independent Component Analysis Image Fusion Independent Component Analysis Image Patch Fusion Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De, I., Chanda, B.: A simple and efficient algorithm for multifocus image fusion using morphological wavelets. Signal Processing 86, 924–936 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Zaveri, T., Zaveri, M.: A Novel Two Step Region Based Multifocus Image Fusion Method. International Journal of Computer and Electrical Engineering 2(1) (February 2010)Google Scholar
  3. 3.
    van Leeuwen, J. (ed.): Computer Science Today. Recent Trends and Developments. LNCS, vol. 1000. Springer, Heidelberg (1995)MATHGoogle Scholar
  4. 4.
    Seales, W., Dutta, S.: Everywhere-in-focus image fusion using controllable cameras. In: Proceedings of SPIE, vol. 2905, pp. 227–234 (1996)Google Scholar
  5. 5.
    Bloch, I.: Information combination operators for data fusion: a review with classification. IEEE Trans. SMC: Part A 26, 52–67 (1996)Google Scholar
  6. 6.
    Eltoukhy, H.A., Kavusi, S.: A computationally efficient algorithm for multi-focus image reconstruction. In: Proceedings of SPIE Electronic Imaging (June 2003)Google Scholar
  7. 7.
    Mukhopadhyay, S., Chanda, B.: Fusion of 2d gray scale images using multiscale morphology. Pattern Recognition 34, 1939–1949 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Yang, X., Yang, W., Pei, J.: Different focus points images fusion based on wavelet decomposition. In: Proceedings of Third International Conference on Information Fusion, vol. 1, pp. 3–8 (2000)Google Scholar
  9. 9.
    Zhang, Z., Blum, R.S.: Image fusion for a digital camera application. In: Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 603–607 (1998) Google Scholar
  10. 10.
    Maurer, D.E., Baker, J.P.: Fusing multimodal biometrics with quality estimates via a Bayesian belief network. Pattern Recognition 41, 821–832 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Hyvrinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, London (2001)CrossRefGoogle Scholar
  12. 12.
    Nian, F., Li, W., Sun, X., Li, M.: An Improved Particle Swarm Op-timization Application to Independent Component Analysis. In: ICIECS 2009, pp. 1–4 (2009)Google Scholar
  13. 13.
    Mitianoudis, N., Stathaki, T.: Pixel-based and region-based image fusion using ICA bases. Information Fusion 8(2), 131–142 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Cvejic, N., Bull, D., Canagarajah, N.: Region-Based Multimodal Image Fusion using ICA Bases. IEEE Sensors Journal 7(5) (May 2007)Google Scholar
  15. 15.
    Nikolov, S., Bull, D., Canagarajah, N.: Wavelets for image fusion. In: Petrosian, A., Meyer, F. (eds.) Wavelets in Signal and Image Analysis, Computational Imaging and Vision Series, pp. 213–244. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  16. 16.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  17. 17.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE T. on Evolutionary Computation 10(3), 281–295 (2006)CrossRefGoogle Scholar
  18. 18.
    Liang, J.J., Suganthan, P.N.: Dynamic Multi-Swarm Particle Swarm Optimizer. In: IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, pp. 124–129 (June 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sanjay Agrawal
    • 1
  • Rutuparna Panda
    • 1
  • Lingaraj Dora
    • 1
  1. 1.Department of Electronics & Telecommunication EngineeringVSS University of TechnologyBurlaIndia

Personalised recommendations