Advertisement

Similarity Adaptation in an Exploratory Retrieval Scenario

  • Sebastian Stober
  • Andreas Nürnberger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6817)

Abstract

Sometimes users of a multimedia retrieval system are not able to explicitly state their information need. They rather want to browse a collection in order to get an overview and to discover interesting content. Exploratory retrieval tools support users in search scenarios where the retrieval goal cannot be stated explicitly as a query or user rather want to browse a collection in order to get an overview and to discover interesting content. In previous work, we have presented Adaptive SpringLens – an interactive visualization technique building upon popular neighborhood-preserving projections of multimedia collections. It uses a complex multi-focus fish-eye distortion of a projection to visualize neighborhood that is automatically adapted to the user’s current focus of interest. This paper investigates how far knowledge about the retrieval task collected during interaction can be used to adapt the underlying similarity measure that defines the neighborhoods.

Keywords

Discrete Cosine Transform Retrieval Task Relevant Image Similarity Adaptation Photo Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bade, K., Nürnberger, A.: Creating a cluster hierarchy under constraints of a partially known hierarchy. In: Proc. of 8th SIAM Int. Conf. on Data Mining (2008)Google Scholar
  2. 2.
    Cheng, W., Hüllermeier, E.: Learning similarity functions from qualitative feedback. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 120–134. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)MATHGoogle Scholar
  4. 4.
    Germer, T., Götzelmann, T., Spindler, M., Strothotte, T.: Springlens: Distributed nonlinear magnifications. In: Eurographics 2006 - Short Papers (2006)Google Scholar
  5. 5.
    Kruskal, J., Wish, M.: Multidimensional Scaling. Sage, Thousand Oaks (1986)Google Scholar
  6. 6.
    Lux, M.: Caliph & Emir: MPEG-7 photo annotation and retrieval. In: Proc. of 17th ACM Int. Conf. on Multimedia (2009)Google Scholar
  7. 7.
    Manjunath, B.S., Ohm, J.-R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology 11, 703–715 (1998)CrossRefGoogle Scholar
  8. 8.
    Martinez, J., Koenen, R., Pereira, F.: MPEG-7: The generic multimedia content description standard, part 1. IEEE MultiMedia 9(2), 78–87 (2002)CrossRefGoogle Scholar
  9. 9.
    Stober, S., Hentschel, C., Nürnberger, A.: Evaluation of adaptive springlens – a multi-focus interface for exploring multimedia collections. In: Proc. of 6th Nordic Conference on Human-Computer Interaction, NordiCHI 2010 (2010)Google Scholar
  10. 10.
    Stober, S., Hentschel, C., Nürnberger, A.: Multi-facet exploration of image collections with an adaptive multi-focus zoomable interface. In: Proc. of 2010 IEEE World Congress on Computational Intelligence (WCCI 2010) (2010)Google Scholar
  11. 11.
    Stober, S., Nürnberger, A.: Towards user-adaptive structuring and organization of music collections. In: Detyniecki, M., Leiner, U., Nürnberger, A. (eds.) AMR 2008. LNCS, vol. 5811, pp. 53–65. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Nürnberger, A., Stober, S.: User modelling for interactive user-adaptive collection structuring. In: Boujemaa, N., Detyniecki, M., Nürnberger, A. (eds.) AMR 2007. LNCS, vol. 4918, pp. 95–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Stober, S., Nürnberger, A.: Musicgalaxy – an adaptive user-interface for exploratory music retrieval. In: Proc. of 7th Sound and Music Conference, SMC 2010 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sebastian Stober
    • 1
  • Andreas Nürnberger
    • 1
  1. 1.Data & Knowledge Engineering Group Faculty of Computer ScienceOtto-von-Guericke-University MagdeburgMagdeburgGermany

Personalised recommendations