Application of Wavelets and Kernel Methods to Detection and Extraction of Behaviours of Freshwater Mussels

  • Piotr Przymus
  • Krzysztof Rykaczewski
  • Ryszard Wiśniewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7105)


Some species of mussels are well-known bioindicators and may be used to create a Biological Early Warning System. Such systems use long-term observations of mussels activity for monitoring purposes. Yet, many of these systems are based on statistical methods and do not use all the potential that stays behind the data derived from the observations. In the paper we propose an algorithm based on wavelets and kernel methods to detect behaviour events in the collected data. We present our algorithm together with a discussion on the influence of various parameters on the received results. The study describes obtaining and pre-processing raw data and a feature extraction algorithm. Other papers which applied mathematical apparatus to Biological Early Warning Systems used much simpler methods and their effectiveness was questionable. We verify the results using a system with prepared tags for specified events. This leads us to a classification of these events and creating a Dreissena polymorpha behaviour dictionary and a Biological Early Warning System. Results from preliminary experiments show, that such a formulation of the problem, allows extracting relevant information from a given signal and yields an effective solution of the considered problem.


Automated biomonitoring Biological Early Warning System Wavelets Time series Zebra mussel (Dreissena polymorpha) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hendriks, A.J., Stouten, M.D.A.: Monitoring the response of microcontaminants by dynamic daphnia magna and leuciscus idus assays in the rhine delta: biological early warning as a useful supplement. Ecotoxicol. Environ. Safety 26, 265–279 (1993)CrossRefGoogle Scholar
  2. 2.
    van Hoof, F., Sluyts, H., Paulussen, J., Berckmans, D., Bloemen, H.: Evaluation of a bio-monitor based on the phototactic behavior of daphnia magna using infrared detection and digital image processing. Water Sci. Technol. 30, 79–86 (1994)Google Scholar
  3. 3.
    Gerhardt, A., Carlsson, A., Resseman, C., Stich, K.-P.: New online biomonitoring system for gammarus pulex (crustacea): in situ test below a copper effluent in south sweden. Environ. Sci. Technol. 32, 150–156 (1998)CrossRefGoogle Scholar
  4. 4.
    Sloof, W., de Zwart, D., Marquenie, J.M.: Detection limits of a biological monitoring system for chemical water pollution based on mussel activity. Bull. Environ. Contam. Toxicol. 30, 400–405 (1983)CrossRefGoogle Scholar
  5. 5.
    Sluyts, H., van Hoof, F., Cornet, A., Paulussen, J.: A dynamic new alarm system for use in biological early warning systems. Environ. Toxicol. Chem. 15, 1317–1323 (1996)CrossRefGoogle Scholar
  6. 6.
    Borcherding, J., Jantz, B.: Valve movement response of the mussel dreissena polymorpha - the influence of ph and turbidity on the acute toxicity of pentachlorophenol under laboratory and field conditions. Ecotoxicology 6, 153–165 (1997)CrossRefGoogle Scholar
  7. 7.
    Kim, C.-K., Kwak, I.-S., Cha, E.-Y., Chon, T.-S.: Implementation of wavelets and artificial neural networks to detection of toxic response behavior of chironomids (chironomidae: Diptera) for water quality monitoring. Ecol. Model. 195, 61–71 (2006)CrossRefGoogle Scholar
  8. 8.
    Kramer, K.J.M., Botterweg, J.: Aquatic biological early warning systems: an overview. In: Jeffrey, D.J., Madden, B. (eds.) Bioindicators and Environmental Management, pp. 95–126. Academic Press, London (1991)Google Scholar
  9. 9.
    Wiśniewski, R.: New methods for recording activity pattern of bivalves: A preliminary report on dreissena polymorpha pallas during ecological stress. In: Tenth Intern. Malacol. Congress, pp. 363–365 (1991)Google Scholar
  10. 10.
    Borcherding, J.: Ten years of practical experience with the dreissena-monitor, a biological early warning system for continuous water quality monitoring. Hydrobiologia 556, 417–426 (2006)CrossRefGoogle Scholar
  11. 11.
    Pynnönen, K.S., Huebner, J.: Effects of episodic low ph exposure on the valve movements of the freshwater bivalve anodonta cygnea. L. Wat. Res. 29, 2579–2582 (1995)CrossRefGoogle Scholar
  12. 12.
    Gudimov, A.V.: Elementary behavioral acts of valve movements in mussels (mytilus edulis l.). Doklady Biological Sciences 391, 346–348 (2003); Translated from Doklady Akademii Nauk 391(3), 422–425 (2003)CrossRefGoogle Scholar
  13. 13.
    Rodland, D.L., Schöne, B.R., Helama, S.O., Nielsen, J.K., Baier, S.M.: A clockwork mollusc: Ultradian rhythms in bivalve activity revealed by digital photography. J. Exp. Biol. Ecol. 334, 316–323 (2006)CrossRefGoogle Scholar
  14. 14.
    Rutkowski, L.: Adaptive Filters and Adaptive Signal Processing (in Polish). WNT, Warsaw (1994)Google Scholar
  15. 15.
    Chui, C.K.: Wavelets: A mathematical tool for signal analysis. SIAM, Philadelphia (1997)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  17. 17.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Piotr Przymus
    • 1
  • Krzysztof Rykaczewski
    • 1
  • Ryszard Wiśniewski
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityToruńPoland
  2. 2.Laboratory of Applied HydrobiologyNicolaus Copernicus UniversityToruńPoland

Personalised recommendations