Optimizing Resources Involved in the Reception of an Emergency Call

Conference paper

Abstract

One of the most important performance criteria in the management of medical emergencies is response time, the time between the moment an incident is reported and the arrival of an ambulance. The physical well-being of the patient depends on when prehospital care is started. The mission of Bogotá’s Center of Emergency Management (Centro Regulador de Urgencias y Emergencias, CRUE), over the next few years is to reduce median response times by 5 min. This work contributes to the achievement of this goal through study of the system to identify critical aspects and the evaluation of resources available to receive emergency calls by using discrete events simulation. The model considers the dynamics of the system from Monday to Thursday, inclusive. The analysis of the remaining days of the week is left for future work. Through a new configuration in the call center and use of resources other than ambulances in the process, a 45% reduction in response time for 90% of cases is achieved.

Keywords

Response Time Service Time Call Center Night Shift Emergency Call 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors want to thank Manuel Villamizar M.D., Consuelo Castillo M.D. and the CRUE administration for their unconditional support for this study.

References

  1. Andersson T, Varbrand P (2007) Decision support tools for ambulance dispatch and relocation. Journal of the Operational Research Society 58 (2):195–201. doi: 10.1057/palgrave.jors.2602174 MATHGoogle Scholar
  2. Banks J, Carson J, Nelson B, Nicol D (2005) Discrete-event System Simulation. Pearson Prentice Hall, Upper Saddle River, NJGoogle Scholar
  3. Beraldi P, Bruni ME (2009) A probabilistic model applied to emergency service vehicle location. Eur J Oper Res 196 (1):323–331. doi: 10.1016/j.ejor.2008.02.027 MATHCrossRefGoogle Scholar
  4. Brotcorne L, Laporte G, Semet F (2003) Ambulance location and relocation models. Eur J Oper Res 147 (3):451–463. doi: 10.1016/s0377-2217(02)00364-8 MathSciNetMATHCrossRefGoogle Scholar
  5. Cone DC, Galante N, MacMillan DS (2008) Can emergency medica dispatch systems safely reduce first-responder call volume? Prehospital Emergency Care 12 (4):479–485. doi: 10.1080/10903120802290844 CrossRefGoogle Scholar
  6. Conover W (1999) Practical nonparametric statistics. John wiley & Sons, New YorkGoogle Scholar
  7. Erkut E, Ingolfsson A, Erdogan G (2008) Ambulance location for maximum survival. Naval Research Logistics 55 (1):42–58. doi: 10.1002/nav.20267 MathSciNetMATHCrossRefGoogle Scholar
  8. García PA (2003) Análisis de capacidad del Call Center de una entidad financiera.Google Scholar
  9. Gendreau M, Laporte G, Semet F (2001) A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel Computing 27 (12):1641–1653MATHCrossRefGoogle Scholar
  10. Gendreau M, Laporte G, Semet F (2006) The maximal expected coverage relocation problem for emergency vehicles. Journal of the Operational Research Society 57 (1):22–28. doi: 10.1057/palgrave.jors.2601991 MATHCrossRefGoogle Scholar
  11. Giraldo M (2005) Simulación y asignación de recursos para el Call Center de una entidad financiera. Universidad de los Andes, BogotáGoogle Scholar
  12. Green L, Kolestar P (2004) Improving emergency responsiveness with management science. Journal of the Institute for operational research and management sciences 50:1001–1014Google Scholar
  13. Guerrero W, Amaya CA, Velasco N Modelo de programación multi-objetivo en el sistema de remisión de pacientes entre hospitales de Bogotá. In: XIV Congreso Latino Iberoamericano de Investigación de Operaciones, Cartagena, Colombia, 2008.Google Scholar
  14. Haghani A, Tian Q, Hu HJ, Trb (2004) Simulation model for real-time emergency vehicle dispatching and routing. In: Transportation Network Modeling 2004. Transportation Research Record, vol 1882. pp 176–183Google Scholar
  15. Harewood SI (2002) Emergency ambulance deployment in Barbados: A multi-objective approach. Journal of the Operational Research Society 53 (2):185–192MATHCrossRefGoogle Scholar
  16. Henders NS, Mason A (2004) Ambulance service planning: Simulation and data visualisation. In: University C (ed) Operations research and health care.Google Scholar
  17. Hinchey P, Myers B, Zalkin J, Lewis R, Garner D (2007) Low acuity EMS dispatch criteria can reliably identify patients without high-acuity illness or injury. Prehospital Emergency Care 11 (1):42–48. doi: 10.1080/10903120601021366 CrossRefGoogle Scholar
  18. Huertas J, Barrera D, Amaya CA, Velasco N (2009) Evaluación del despacho de ambulancias del Centro Regulador de Urgencias y Emergencias CRUE de Bogotá. Universidad de los Andes, BogotáGoogle Scholar
  19. Ingolfsson A, Budge S, Erkut E (2008) Optimal ambulance location with random delays and travel times. Health Care Management Science 11 (3):262–274. doi: 10.1007/s10729-007-9048-1 CrossRefGoogle Scholar
  20. Jia HZ, Ordonez F, Dessouky MM (2007) Solution approaches for facility location of medical supplies for large-scale emergencies. Computers & Industrial Engineering 52 (2):257–276. doi: 10.1016/j.cie.2006.12.007 CrossRefGoogle Scholar
  21. Kelton WD, Sadowski RP, Swets B (2010) Simulation with Arena. BostonGoogle Scholar
  22. Kuhl ME, Ivy JS, Lada EK, Steiger NM, Wagner MA, Wilson JR (2010) Univariate input models for stochastic simulation. Journal of Simulation 4:81–97CrossRefGoogle Scholar
  23. Kuisma M, Boyd J, Vayrynen T, Repo J, Nousila-Wiik M, Holmstrom P (2005) Emergency call processing and survival from out-of-hospital ventricular fibrillation. Resuscitation 67 (1):89–93. doi: 10.1016/j.resuscitation.2005.04.008 CrossRefGoogle Scholar
  24. Kuisma M, Holmstrom P, Repo J, Maatta T, Nousila-Wiik M, Boyd J (2004) Prehospital mortality in an EMS system using medical priority dispatching: a community based cohort study. Resuscitation 61 (3):297–302. doi: 10.1016/j.resuscitation.2004.01.008 CrossRefGoogle Scholar
  25. Kuisma M, Vayrynen T, Hiltunen T, Porthan K, Aaltonen J (2009) Effect of introduction of electronic patient reporting on the duration of ambulance calls. American Journal of Emergency Medicine 27 (8):948–955. doi: 10.1016/j.ajem.2008.07.033 CrossRefGoogle Scholar
  26. Kulkarni VG (1995) Modeling and analysis of stochastic systems. New YorkGoogle Scholar
  27. An hypercube queuing model for facility location and redistricting in urban emergency services (1974).Google Scholar
  28. Martinez M, Valcárcel O, Montessi LJ (2003) Manual para los equipos de regulación médica.Google Scholar
  29. Mendonca FC, Morabito R (2001) Analysing emergency medical service ambulance deployment on a Brazilian highway using the hypercube model. Journal of the Operational Research Society 52 (3):261–270MATHCrossRefGoogle Scholar
  30. Moeller B (2004) Obstacles to measuring emergency medical services performance. EMS Mngt 1 (2):8–15Google Scholar
  31. Mohd C, Mohd I, Mohsin S (2008) Ambulance response time and emergency medical dispatcher program: A study in Kelantan Malaysia. Southeast Asian Journal of tropical Medecine & public health 39:1140–1153Google Scholar
  32. Pell J, Sirel J, Marsden A, Ford I, Cobb S (2001) Effect of reducing ambulance response time on deaths from out of hospital cardiac arrest: Cohort study. British Medical Journal 322:1385–1388CrossRefGoogle Scholar
  33. Riaño G (2007) Análisis de Call Centers. Modelos probabilísticos con aplicaciones.Google Scholar
  34. Rojas A, Avarez L, Parra J (2007) Diseño metodológico para la ubicación de ambulancias en el sector de atención prehospitalaria en Bogotá D.C. Revista de Ingeniería Industrial 6 (1):77–94Google Scholar
  35. Rosas JC (2003) Optimización del Call Center de Credibanco-Visa Colombia. Universidad de los Andes, BogotáGoogle Scholar
  36. Santiano N, Young L, Hillman K, Parr M, Jayasinghe S, Baramy LS, Stevenson J, Heath T, Chan C, Claire M, Hanger G (2009) Analysis of Medical Emergency Team calls comparing subjective to “objective” call criteria. Resuscitation 80 (1):44–49. doi: 10.1016/j.resuscitation.2008.08.010 CrossRefGoogle Scholar
  37. Sathe A, Miller-Hooks E, Trb (2005) Optimizing location and relocation of response units in guarding critical facilities. In: Network Modeling 2005. Transportation Research Record, vol 1923. pp 127–136Google Scholar
  38. Savas E (1969) Simulation and cost-effectiveness analysis of New York’s emergency ambulance service. Management Science 15:608–627CrossRefGoogle Scholar
  39. Silva F, Serra D (2008) Locating emergency services with different priorities: the priority queuing covering location problem. Journal of the Operational Research Society 59 (9):1229–1238. doi: 10.1057/palgrave.jors.2602473 MATHCrossRefGoogle Scholar
  40. Simpson NC, Hancock PG (2009) Fifty years of operational research and emergency response. Journal of the Operational Research Society 60:S126-S139. doi: 10.1057/jors.2009.3 MATHCrossRefGoogle Scholar
  41. Singer M, Donoso P (2008) Assessing an ambulance service with queuing theory. Computers & Operations Research 35 (8):2549–2560. doi: 10.1016/j.cor.2006.12.005 MATHCrossRefGoogle Scholar
  42. Snooks H, Evans A, Wells B, Peconi J, Thomas M (2008) What are the highest priorities for research in pre-hospital care? Results of a review and a Delphi consultation exercise. Journal of Emergency Primary Health Care 11:42–48Google Scholar
  43. Valinsky D (1955) A determination of the optimum location of firefighting units in New York City. Opns Res 4:494–512.CrossRefGoogle Scholar
  44. Wilson S, Cooke M, Morell R, Bridge P, Allan T (2002) A systematic review of the evidence supporting the use of priority dispatch of the emergency ambulance. Prehospital Emergency Care 6:42–49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. Guaracao
    • 1
  • D. Barrera
    • 1
  • N. Velasco
    • 1
  • C. A. Amaya
    • 1
  1. 1.Department of Industrial EngineeringUniversidad de Los AndesBogotáColombia

Personalised recommendations