Skip to main content

High Precision BLDCM Servo Control with Nonlinear Identification

  • Conference paper
Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 133))

  • 2045 Accesses

Abstract

Nonlinear factors cause great influence to brushless DC motor (BLDCM) servo control system. One common result is that servo system can not respond rapidly when the direction of reference signal changes which is a serious problem to high speed aircraft. In this paper, a simple nonlinear identification method based on sliding mode variable structure algorithm is proposed to identify those nonlinear factors, and a novel fitting model modified from LuGre model is presented aiming to be utilized in control algorithm to compensate identified nonlinear factors. Simulation results show that the control precision can be improved significantly by the proposed method.

This work was supported by National Science Foundation of China under Grant No.61074010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pillay, P., Krishnan, R.: Modeling, Simulation and Analysis of Permanent-Magnet Motor Drivers, Part II: The Brushless DC Motor Drive. IEEE Trans. on Industry Applications, 274–279 (1989)

    Google Scholar 

  2. Armstrong-Hélouvry, B., Dupont, P., Canudas de Wit, C.: A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction. Automatica 30(7), 1083–1138 (1994)

    Article  MATH  Google Scholar 

  3. Seong, I.H., Kwon, L.S.: Recurrent Neural Network Control for Nonlinear Friction with Sliding Mode and Friction Estimator. In: 6th International Conference on Natural Computation, pp. 1387–1392 (2010)

    Google Scholar 

  4. Liu, D.: Parameter Identification for LuGre Friction Model Using Genetic Algorithms. In: 5 th International Conference on Machine Learning and Cybernetics, pp. 3419–3422 (2006)

    Google Scholar 

  5. Zhang, W.: Parameter Identification of LuGre Friction Model in Servo System Based on Improved Particle Swarm Optimization Algorithm. In: 26th Chinese Control Conference, pp. 135–139 (2007)

    Google Scholar 

  6. Xian, B., Dawson, D.M., de Queiroz, M.S., Chen, J.: A Continuous Asymptotic Tracking Control Strategy for Uncertain Multi-input Nonlinear Systems. IEEE Trans. Automatic Control 49(7), 1206 (2004)

    Article  Google Scholar 

  7. Makkar, C., Hu, G., Sawyer, W.G., Dixon, W.E.: Lyapunov-Based Tracking Control in the Presence of Uncertain Nonlinear Parameterizable Friction. IEEE Trans. on Automatic Control 52(10), 1988–1993 (2007)

    Article  MathSciNet  Google Scholar 

  8. Zhang, C., Liu, Q.: Friction Modeling and Compensation of Positioning Stage Driven by Linear Motor. Journal of Beijing University of Aeronautics and Astronautics 34(1), 47–50 (2008) (in Chinese)

    Google Scholar 

  9. Canudas de Wit, C., Olsson, H., Astrom, K.J.: A New Model for Control of System with Friction. IEEE Trans. on Automatic Control 40(3), 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Olsson, H., Astrom, K.J., Canudas de Wit, C., Gafvert, M.P., Lischinsky: Friction Models and Friction Compensation (1997)

    Google Scholar 

  11. Olsson, H., Astrom, K.J.: Observer Based Friction Compensation. In: Proceedings of 35th IEEE Conference on Decision and Control, Japan, pp. 4345–4350 (1996)

    Google Scholar 

  12. Hu, H., Yue, J., Zhang, P.: A Control Scheme Based on RBF Neural Network for High-Precision Servo System. In: International Conference on Mechatronics and Automation, pp. 1489–1494 (2010)

    Google Scholar 

  13. Gao, W., Huang, J.: Variable Structure Control of Nonlinear Systems: a New Approach. IEEE Trans. on Industrial Electronics 40(1), 45–55 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bao, D., Huo, W. (2011). High Precision BLDCM Servo Control with Nonlinear Identification. In: Yang, D. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25992-0_102

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25992-0_102

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25991-3

  • Online ISBN: 978-3-642-25992-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics