Using a Dependently-Typed Language for Expressing Ontologies

  • Richard Dapoigny
  • Patrick Barlatier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7091)


Since the last decade the wide spread language for expressing ontologies relies on Description Logics (DLs). However, most of the versions syntactically anchor their modeling primitives on classical logic and require additional theories (i.e., first-order logic, ...) for simultaneously supporting (i) the introduction of constant values (e.g., for individuals) (ii) the limitation of expressiveness for decidability and (iii) the introduction of variables for reasoning with rules. In this paper we show that the introduction of a type theoretical formalism that relies both on a constructive logic and on a typed lambda calculus is able to go beyond these aspects in a single theory. In particular we will show that a number of logical choices (constructive logic, predicative universes for data types, impredicative universe for logic, ...) about the theory will lead to an highly expressive theory which allows for the production of conceptually clean and semantically unambiguous ontologies.


Type Theory Dependent Type Natural Deduction Constructive Logic Subtyping Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics. Elsevier (1999)Google Scholar
  2. 2.
    Bittner, T., Donnelly, M.: Computational ontologies of parthood, componenthood, and containment. In: Procs. of the Nineteenth International Joint Conference on Artificial Intelligence, pp. 382–387 (2005)Google Scholar
  3. 3.
    Burstall, R., Goguen, J.: The Semantics of Clear, a Specification Language. In: Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  4. 4.
    Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2–3), 95–120 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dapoigny, R., Barlatier, P.: Towards Ontological Correctness of Part-whole Relations with Dependent Types. In: Procs. of the Sixth International Conference, FOIS 2010, pp. 45–58 (2010)Google Scholar
  6. 6.
    Dapoigny, R., Barlatier, P.: Modeling Contexts with Dependent Types. Fundamenta Informaticae 104(4), 293–327 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Guarino, N.: The Ontological Level. In: Philosophy and the Cognitive Sciences, pp. 443–456. Holder-Pichler-Tempsky (1994)Google Scholar
  9. 9.
    Guizzardi, G.: The Role of Foundational Ontology for Conceptual Modeling and Domain Ontology Representation. In: 7th International Baltic Conference on Databases and Information Systems, Keynote Paper (2006)Google Scholar
  10. 10.
    Hoekstra, R., Liem, J., Bredeweg, B., Breuker, J.: Requirements for Representing Situations. In: OWLED (2006)Google Scholar
  11. 11.
    Luo, Z.: Computation and Reasoning, vol. 11. Oxford Science Publications (1994)Google Scholar
  12. 12.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology Library. WonderWeb Deliverable D18 (ver.1.0, 31-12-2003) (2003)Google Scholar
  13. 13.
    Masolo, C.: Understanding Ontological Levels. In: Procs. of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010), pp. 258–268. AAAI Press (2010)Google Scholar
  14. 14.
    Reus, B., Streicher, T.: Verifying Properties of Module Construction in Type Theory. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 660–670. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  15. 15.
    Smith, B., Rosse, C.: The Role of Foundational Relations in the Alignment of Biomedical Ontologies. In: Procs. of MEDINFO 2004, pp. 444–449 (2004)Google Scholar
  16. 16.
    Werner, B.: On the strength of proof-irrelevant type theories. Logical Methods in Computer Science 4(3) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Richard Dapoigny
    • 1
  • Patrick Barlatier
    • 1
  1. 1.Laboratoire d’Informatique, Sytèmes, Traitement de l’Information et de la ConnaissanceUniversité de SavoieAnnecy-le-vieux cedexFrance

Personalised recommendations