Sensing Presence (PreSense) Ontology: User Modelling in the Semantic Sensor Web

  • Amparo-Elizabeth Cano
  • Aba-Sah Dadzie
  • Victoria Uren
  • Fabio Ciravegna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7117)

Abstract

Increasingly, people’s digital identities are attached to, and expressed through, their mobile devices. At the same time digital sensors pervade smart environments in which people are immersed. This paper explores different perspectives in which users’ modelling features can be expressed through the information obtained by their attached personal sensors. We introduce the PreSense Ontology, which is designed to assign meaning to sensors’ observations in terms of user modelling features. We believe that the Sensing Presence (PreSense) Ontology is a first step toward the integration of user modelling and “smart environments”. In order to motivate our work we present a scenario and demonstrate how the ontology could be applied in order to enable context-sensitive services.

Keywords

Linked data streams semantic sensor web user modelling smart objects 

References

  1. 1.
    Estrin, D., Culler, D., Pister, K., Sukhatme, G.: Connecting the physical world with pervasive networks. IEEE Pervasive Computing 1(1), 59–69 (2002)CrossRefGoogle Scholar
  2. 2.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Journal on Semantic Web and Information Systems (2009)Google Scholar
  3. 3.
    Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. Geo. Journal 69, 211–221 (2007)Google Scholar
  4. 4.
    Hogg, T.: Inferring preference correlations from social networks. Electronic Commerce Research and Applications – Special Issue: Social Networks and Web 2.0 9(1), 29–37 (2010)CrossRefGoogle Scholar
  5. 5.
    Kamis, A., Stern, T., Ladik, D.: A flow-based model of web site intentions when users customize products in business-to-consumer electronic commerce. Information Systems Frontiers 12, 157–168 (2010)CrossRefGoogle Scholar
  6. 6.
    Rowe, M.: The credibility of digital identity information on the social web: a user study. In: Proc. 4th ACM Workshop on Information Credibility on the Web, pp. 35–42 (2010)Google Scholar
  7. 7.
    Green, N., Harper, R.H.R., Murtagh, G., Cooper, G.: Configuring the mobile user: Sociological and industry views. Personal and Ubiquitous Computing 5, 146–156 (2001)CrossRefGoogle Scholar
  8. 8.
    Hong, D., Chiu, D., Shen, V., Cheung, S., Kafeza, E.: Ubiquitous enterprise service adaptations based on contextual user behavior. Information Systems Frontiers 9, 343–358 (2007)CrossRefGoogle Scholar
  9. 9.
    Küpper, A.: Location-Based Services: Fundamentals and Operation. Wiley (2005)Google Scholar
  10. 10.
    Yamada, T., Kaneko, M., Katou, K.: A Mobile Communication Simulation System for Urban Space with User Behavior Scenarios. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J., et al. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 979–990. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Compton, M., Henson, C., Neuhaus, H., Lefort, L., Sheth, A.: A survey of the semantic specification of sensors. In: SSN 2009: Proc. 2nd International Workshop on Semantic Sensor Networks at ISWC 2009, pp. 17–32 (2009)Google Scholar
  12. 12.
    Kabadayi, S., Pridgen, A., Julien, C.: Virtual sensors: Abstracting data from physical sensors. In: WoWMoM 2006: Proc. International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 587–592 (2006)Google Scholar
  13. 13.
    Sheth, A.P., Henson, C.A., Sahoo, S.S.: Semantic sensor web. IEEE Internet Computing 12(4), 78–83 (2008)CrossRefGoogle Scholar
  14. 14.
    Bonato, P.: Wearable sensors and systems. IEEE Engineering in Medicine and Biology Magazine 29(3), 25–36 (2010)CrossRefGoogle Scholar
  15. 15.
    Konstantas, D.: An overview of wearable and implantable medical sensors. Yearbook of Medical Informatics 66(9) (2007)Google Scholar
  16. 16.
    Viviani, M., Bennani, N., Egyed-zsigmond, E., Liris, I.: A Survey on User Modeling in Multi-Application Environments. In: Third International Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies and Services (2010)Google Scholar
  17. 17.
    Baumgartner, N., Retschitzegger, W.: A survey of upper ontologies for situation awareness. In: Proc. 4th IASTED International Conference on Knowledge Sharing and Collaborative Engineering, pp. 1–9 (2006)Google Scholar
  18. 18.
    Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An ontology-based context model in intelligent environments. In: Proc. Communication Networks and Distributed Systems Modeling and Simulation Conference, pp. 270–275 (2004)Google Scholar
  19. 19.
    Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: GUMO – the General User Model Ontology. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 428–432. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Heckmann, D., Krueger, A.: A user modeling markup language (UserML) for ubiquitous computing. In: Proc. 9th International Conference on User Modeling, pp. 393–397 (2003)Google Scholar
  21. 21.
    Stevenson, G., Knox, S., Dobson, S., Nixon, P.: Ontonym: a collection of upper ontologies for developing pervasive systems. In: CIAO 2009: Proc. 1st Workshop on Context, Information and Ontologies, pp. 1–8 (2009)Google Scholar
  22. 22.
    Benlamri, R., Docksteader, L.: MORF: A mobile health-monitoring platform. IT Professional 12(3), 18–25 (2010)CrossRefGoogle Scholar
  23. 23.
    Janowicz, K., Compton, M.: The Stimulus-Sensor-Observation ontology design pattern and its integration into the Semantic Sensor Network ontology. In: SSN 2010: Proc. 3rd International Workshop on Semantic Sensor Networks at ISWC (2010)Google Scholar
  24. 24.
    Compton, M., Neuhaus, H., Tran, K.N.: Reasoning about sensors and compositions. In: 2nd International Semantic Sensor Networks Workshop (2009)Google Scholar
  25. 25.
    Neuhaus, H., Compton, M.: The semantic sensor network ontology: A generic language to describe sensor assets. In: AGILE Workshop: Challenges in Geospatial Data Harmonisation (2009)Google Scholar
  26. 26.
    Hartig, O.: Provenance information in the web of data. In: LDOW 2009: Proc. Linked Data on the Web Workshop at WWW 2009 (2009)Google Scholar
  27. 27.
    Janowicz, K., Broering, A., Stasch, C., Everding, T.: Towards meaningful URIs for linked sensor data. In: FIS Workshop: Towards Digital Earth: Search, Discover and Share Geospatial Data (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Amparo-Elizabeth Cano
    • 1
  • Aba-Sah Dadzie
    • 1
  • Victoria Uren
    • 1
  • Fabio Ciravegna
    • 1
  1. 1.Department of Computer ScienceThe University of SheffieldSheffieldUnited Kingdom

Personalised recommendations