A Knowledge Dashboard for Manufacturing Industries

  • Suvodeep Mazumdar
  • Andrea Varga
  • Vita Lanfranchi
  • Daniela Petrelli
  • Fabio Ciravegna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7117)


The manufacturing industry offers a huge range of opportunities and challenges for exploiting semantic web technologies. Collating heterogeneous data into semantic knowledge repositories can provide immense benefits to companies, however the power of such knowledge can only be realised if end users are provided visual means to explore and analyse their datasets in a flexible and efficient way. This paper presents a high level approach to unify, structure and visualise document collections using semantic web and information extraction technologies.


Semantic Web Information Visualisation User Interaction 


  1. 1.
    Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Cambridge University Press (1998)Google Scholar
  2. 2.
    Bhagdev, R., Chakravarthy, A., Chapman, S., Ciravegna, F., Lanfranchi, V.: Creating and Using Organisational Semantic Webs in Large Networked Organisations. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 723–736. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Harding, J.A., Shahbaz, M., Srinivas, Kusiak, A.: Datamining in manufacturing: A review. American Society of Mechanical Engineers (ASME). Journal of Manufacturing Science and Engineering 128(4), 969–976 (2006)CrossRefGoogle Scholar
  4. 4.
    Wang, K.: Applying data mining to manufacturing: the nature and implications. Journal of Intelligent Manufacturing of Intelligent Manufacturing (2007)Google Scholar
  5. 5.
    Choudhary, A., Harding, J., Tiwari, M.: Data mining in manufacturing: a review based on the kind of knowledge. Journal of Intelligent Manufacturing 20(5), 501–521 (2009)CrossRefGoogle Scholar
  6. 6.
    Guh, R.S.: Real time pattern recognition in statistical process control: A hybrid neural network/decision tree-based approach. Proceedings of the Institution of Mechanical Engineers. Journal of Engineering Manufacture (2005)Google Scholar
  7. 7.
    Kwak, C., Yih, Y.: Data mining approach to production control in the computer integrated testing cell. IEEE Transactions on Robotics and Automation (2004)Google Scholar
  8. 8.
    Crespo, F., Webere, R.: A methodology for dynamic datamining based on fuzzy clustering. Fuzzy Sets and Systems (2005)Google Scholar
  9. 9.
    Cunha, D., Agard, B., Kusiak, A.: Data mining for improvement of product quality. International Journal of Production Research (2006)Google Scholar
  10. 10.
    Shahbaz, M., Srinivas, Harding, J.A., Turner, M.: Product design and manufacturing process improvement using association rules. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2006)Google Scholar
  11. 11.
    Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  12. 12.
    Jing, J.: A literature survey on domain adaptation of statistical classifiers. Technical report (2008)Google Scholar
  13. 13.
    Ciravegna, F., Dingli, A., Petrelli, D., Wilks, Y.: Timely and nonintrusive active document annotation via adaptive information extraction. In: Proc. Workshop Semantic Authoring Annotation and Knowledge Management (2002)Google Scholar
  14. 14.
    Rohrer, R.: Visualization and its importance in manufacturing simulation. Industrial Management (1996)Google Scholar
  15. 15.
    Rohrer, M.W.: Seeing is believing: the importance of visualization in manufacturing simulation. In: Proceedings of the 2000 Winter Simulation Conference (2000)Google Scholar
  16. 16.
    Kamath, R.S., Kamat, R.K.: Development of cost effective 3D stereo visualization software suite for manufacturing industries. Indian Journal of Science and Technology (2010)Google Scholar
  17. 17.
    Agrusa, R., Mazza, V.G., Penso, R.: Advanced 3D Visualization for Manufacturing and Facility Controls. Human System Interactions (2009)Google Scholar
  18. 18.
    Edgar, G.W.: Visualization for non-linear engineering FEM analysis in manufacturing. In: Proceedings of the 1st Conference on Visualization 1990 (1990)Google Scholar
  19. 19.
    Gausemeier, J., Ebbesmeyer, P., Grafe, M., Bohuszewicz, O.v.: Cyberbikes - Interactive Visualization of Manufacturing Processes in a Virtual Environment. In: Proceedings of the Tenth International IFIP WG5.2/WG5.3 Conference on Globalization of Manufacturing in the Digital Communications Era of the 21st Century: Innovation, Agility, and the Virtual Enterprise (1999)Google Scholar
  20. 20.
    Greif, M.: The visual factory: building participation through shared information (1989)Google Scholar
  21. 21.
    Zhong, Y., Shirinzadeh, B.: Virtual factory for manufacturing process visualization. Complexity International (2008)Google Scholar
  22. 22.
    Stowasser, S.: Hybrid Visualization of Manufacturing Management Information for the Shop Floor. In: Human-Computer Interaction: Theory and Practice (Part 2), vol. 2 (2008)Google Scholar
  23. 23.
    Few, S.: Information Dashboard Design: The Effective Visual Communication of Data. 3900693099. O’Reilly Media (2006)Google Scholar
  24. 24.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy of information visualization. In: Bederson, B., Shneiderman, B. (eds.) The Craft of Information Visualization. Morgan Kaufman, San Francisco (2003)Google Scholar
  25. 25.
    Joachims, T.: Estimating the generalization performance of a SVM efficiently. In: Proceedings of International Conference on Machine Learning (2000)Google Scholar
  26. 26.
    Butters, J., Ciravegna, F.: Authoring Technical Documents for Effective Retrieval. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 287–300. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Ackoff, R.L.: From Data to Wisdom. Journal of Applied Systems Analysis 16 (1989)Google Scholar
  28. 28.
    Blei, D., Ng, A., Jordan, M.: Latent Dirichlet Allocation. Journal of Machine Learning Research (2003)Google Scholar
  29. 29.
    Guo, H., Zhu, H., Guo, Z., Zhang, X., Wu, X., Su, Z.: Domain adaptation with latent semantic association for named entity recognition. In: Proc. HTL-NAACL, pp. 281–289 (June 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Suvodeep Mazumdar
    • 1
  • Andrea Varga
    • 2
  • Vita Lanfranchi
    • 2
  • Daniela Petrelli
    • 3
  • Fabio Ciravegna
    • 2
  1. 1.Information SchoolUniversity of SheffieldSheffieldUK
  2. 2.OAK Group, Department of Computer ScienceUniversity of SheffieldSheffieldUK
  3. 3.Art & Design Research Centre, C3RISheffield Hallam UniversitySheffieldUK

Personalised recommendations