From Biological to Urban Cells: Lessons from Three Multilevel Agent-Based Models

  • Javier Gil-Quijano
  • Thomas Louail
  • Guillaume Hutzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7057)

Abstract

Modeling complex systems often implies to consider entities at several levels of organization and levels of scales. Taking into account these levels, their mutual interactions, and the organizational dynamics at the interface between levels, is a difficult problem, for which the proposed solutions are often related to a specific disciplinary field or a particular case study. In order to develop a broader methodology for designing multilevel models, we propose an analytical framework of existing approaches, drawn in particular from the study of three examples in biology and geography.

Keywords

Multiagent System Multilevel Model Microscopic Level Aggregate Model Mesoscopic Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertaud, A.: The spatial organization of cities: deliberate outcome or unforeseen consequence (2004), http://alain-bertaud.com/images/AB_The_spatial_organization_of_cities_Version_3.pdf
  2. 2.
    Bura, S., Guerin-Pace, F., Mathian, H., Pumain, D., Sanders, L.: Multi-agents system and the dynamics of a settlement system. Geog. Anal. 28(2), 161–178 (1996)CrossRefGoogle Scholar
  3. 3.
    Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: an Organizational View of Multiagent Systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.) AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Gaud, N., Galland, S., Gechter, F., Hilaire, V., Koukam, A.: Holonic multilevel simulation of complex systems: Application to real-time pedestrians simulation in virtual urban environment. Sim. Model. Pract. and Th. 16(10), 1659–1676 (2008)CrossRefGoogle Scholar
  5. 5.
    Gibson, C.C., Ostrom, E., Ahn, T.K.: The concept of scale and the human dimensions of global change: a survey. Ecological Economics 32(2), 217–239 (2000)CrossRefGoogle Scholar
  6. 6.
    Gignoux, J., Davies, I., Hill, D.: 3worlds: a new platform for simulating ecological systems. In: 1st Open Inter. Conf. on Modelling and Simulation, Clermont-Ferrand, pp. 49–64 (2005)Google Scholar
  7. 7.
    Gil-Quijano, J., Piron, M., Drogoul, A.: Mechanisms of automated formation and evolution of social-groups: A multi-agent system to model the intra-urban mobilities of Bogotá city. In: Social Simulation: Technologies, Advances and New Discoveries, ch. 12, pp. 151–168. Idea Group Inc. (2007)Google Scholar
  8. 8.
    Hubner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems using the moise model: programming issues at the system and agent levels. International Journal of Agent-Oriented Software Engineering 1(3), 370–395 (2007)CrossRefGoogle Scholar
  9. 9.
    Lesne, A.: Multi-scale approaches. Encyc. of Math. Phys. 3, 465–482 (2006)CrossRefGoogle Scholar
  10. 10.
    Louail, T.: Can geometry explain socio-economical differences between US and european cities. In: AB2S Workshop, Paris, ISC-PIF (November 2008)Google Scholar
  11. 11.
    Maquerlot, F., Galiacy, S., Malo, M., Guignabert, C., Lawrence, D.A., d’Ortho, M.-P., Barlovatz-Meimon, G.: Dual role for plasminogen activator inhibitor type 1 as soluble and as matricellular regulator of epithelial alveolar cell wound healing. Am. J. Pathol. 169, 1624–1632 (2006)CrossRefGoogle Scholar
  12. 12.
    Marilleau, N., Cambier, C., Drogoul, A., Perrier, E., Chotte, J.L., Blanchart, E.: Multiscale mas modelling to simulate the soil environment: Application to soil ecology. Simulation Modelling Practice and Theory 16, 736–745 (2008)CrossRefGoogle Scholar
  13. 13.
    Moncion, T., Hutzler, G., Amar, P.: Detection of emergent phenomena in multi-agent systems. In: Proceedings of the Evry Spring School on Modelling Complex Biological Systems in the Context of Genomics, pp. 45–49. EDP Sciences (2007)Google Scholar
  14. 14.
    Pumain, D.: Pour une théorie évolutive des villes. L’Espace Géographique 2, 119–134 (1997)CrossRefGoogle Scholar
  15. 15.
    Quesnel, G., Duboz, R., Ramat, E.: The Virtual Laboratory Environment An operational framework for multi-modelling, simulation and analysis of complex dynamical systems. Sim. Model. Pract. and Th. 17(4), 641–653 (2009)CrossRefGoogle Scholar
  16. 16.
    Servat, D., Perrier, E., Treuil, J.-P., Drogoul, A.: When Agents Emerge From Agents: Introducing Multi-Scale Viewpoints In Multi-agent simulations. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 183–198. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Vo, D.-A., Drogoul, A., Zucker, J.-D.: A Modelling Language to Represent and Specify Emerging Structures in Agent-Based Model. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS(LNAI), vol. 7057, pp. 212–227. Springer, Heidelberg (2012)Google Scholar
  18. 18.
    Zeigler, B.P., Kim, T.G., Praehofer, H.: Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems, vol. 1. Academic Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Javier Gil-Quijano
    • 1
  • Thomas Louail
    • 2
    • 3
  • Guillaume Hutzler
    • 2
  1. 1.CEA, LIST, LIMAGif-sur-Yvette CEDEXFrance
  2. 2.IBISC LaboratoryEvry-Val d’Essonne UniversityEvryFrance
  3. 3.Geographie-Cités LaboratoryCNRS, Paris 1-Paris 7 UniversitiesParisFrance

Personalised recommendations