Using Belief Theory to Formalize the Agent Behavior: Application to the Simulation of Avian Flu Propagation

  • Patrick Taillandier
  • Edouard Amouroux
  • Duc An Vo
  • Ana-Maria Olteanu-Raimond
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7057)

Abstract

Multi-agent simulations are powerful tools to study complex systems. However, a major difficulty raised by these simulations concerns the design of the agent behavior. Indeed, when the agent behavior is lead by many conflicting criteria (needs and desires), its definition is very complex. In order to address this issue, we propose to use the belief theory to formalize the agent behavior. This formal theory allows to manage the criteria incompleteness, uncertainty and imprecision. The formalism proposed divides the decision making process in three steps: the first one consists in computing the basic belief masses of each criterion; the second one in merging these belief masses; and the last one in making a decision from the merged belief masses. An application of the approach is proposed in the context of a model dedicated to the study of the avian flu propagation.

Keywords

multi-agent simulation agent behavior formalization belief theory avian flu propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, pp. 473–484 (1991)Google Scholar
  2. 2.
    Robert, G., Guillot, A.: A motivational architecture of action selection for non-player characters in dynamic environments. International Journal of Intelligent Games & Simulation 4, 1–12 (2005)Google Scholar
  3. 3.
    Figueira, J., Mousseau, V., Roy, B.: ELECTRE Methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 133–162. Springer, New York (2005)CrossRefGoogle Scholar
  4. 4.
    Behzadian, M., Kazemzadeh, R., Albadvi, A., Aghdasi, M.: PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research (2009)Google Scholar
  5. 5.
    Geoffrion, A., Dyer, J., Feinberg, A.: An interactive approach for multicriterion optimisation with an application to the operation of an academic department. Manage. Sci. 19(4), 357–368 (1972)CrossRefMATHGoogle Scholar
  6. 6.
    Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for multicriteria decision making, the UTA method. European Journal of Operational Research 10(2), 151–164 (1982)CrossRefMATHGoogle Scholar
  7. 7.
    Benayoun, R., Laritchev, O., de Mongolfier, J., Tegny, J.: Linear programming with multiple objective functions: Step method (stem). Math. Program. 1(3), 366–375 (1971)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ignizio, J.: A review of goal programming: a tool for multi objective analysis. J. Oper. Res. Soc. 29(11), 1109–1119 (1978)CrossRefMATHGoogle Scholar
  9. 9.
    Ben Mena, S.: Introduction aux méthodes multicritères d’aide à la décision. Biotechnol. Agro. Soc. Environ. 4(2), 83–93 (2000)Google Scholar
  10. 10.
    Marcum, J.: A statistical theory of target detection by pulsed radar. IEEE Trans. Info. Thry. (1960)Google Scholar
  11. 11.
    Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)Google Scholar
  12. 12.
    Dempster, A.: Upper and lower probabilities induced by multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Omrani, H., Ion-Boussier, L., Trigano, P.: A new approach for impacts assessment of urban mobility. WSEAS Transaction on Information Science and Applications 4(3), 439–444 (2007)Google Scholar
  14. 14.
    Olteanu-Raimond, A.M., Mustière, S.: Data matching - a matter of belief. In: 13th International Symposium on Spatial Data Handling (SDH 2008), Montpellier, France (2008)Google Scholar
  15. 15.
    Taillandier, P., Duchêne, C., Drogoul, A.: Using Belief Theory to Diagnose Control Knowledge Quality. Application to cartographic generalization. In: IEEE-RIVF, Danang City, Vietnam (2009)Google Scholar
  16. 16.
    Appriou, A.: Probabilité et incertitude en fusion de données multi-senseurs. Revue Scientifique et Technique de la Défense 1, 27–40 (1991)Google Scholar
  17. 17.
    Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66(2), 191–234 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Smets, P.: Constructing the pignistic probability function in a context of uncertainty. Uncertainty in Artificial Intelligence 5, 29–39 (1990)CrossRefMATHGoogle Scholar
  19. 19.
    Amouroux, E., Gaudou, B., Desvaux, S., Drogoul, A.: O.D.D.: a Promising but Incomplete Formalism For Individual-Based Model Specification. Paper to appear in ’IEEE International Conference on Computing and Telecommunication Technologies’ (2010)Google Scholar
  20. 20.
    Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An Environment for Implementing and Running Spatially Explicit Multi-Agent Simulations. In: Ghose, A., Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS, vol. 5044, pp. 359–371. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Taillandier, P., Drogoul, A., Vo, D.A., Amouroux, A.: GAMA: A Simulation Platform that Integrates Geographical Information Data, Agent-Based Modeling and Multi-Scale Control. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS(LNAI), vol. 7057, pp. 244–260. Springer, Heidelberg (2011)Google Scholar
  22. 22.
    Taillandier, P., Buard, E.: Designing Agent Behaviour in Agent-Based Simulation through Participatory Method. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS, vol. 5925, pp. 571–578. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Taillandier, P., Chu, T.Q.: Using Participatory Paradigm to Learn Human Behaviour. In: International Conference on Knowledge and Systems Engineering, Hanoi, Vietnam, pp. 55–60 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patrick Taillandier
    • 1
    • 2
  • Edouard Amouroux
    • 1
    • 2
  • Duc An Vo
    • 1
    • 2
  • Ana-Maria Olteanu-Raimond
    • 3
  1. 1.IRD, UMI UMMISCO 209BondyFrance
  2. 2.IFI, MSI, UMI 209HanoiVietnam
  3. 3.France Telecom, SENSE LaboratoryIssy les MoulineauxFrance

Personalised recommendations