A Distributed Task Specification Language for Mixed-Initiative Delegation
Abstract
In the next decades, practically viable robotic/agent systems are going to be mixed-initiative in nature. Humans will request help from such systems and such systems will request help from humans in achieving the complex mission tasks required. Pragmatically, one requires a distributed task specification language to define tasks and a suitable data structure which satisfies the specification and can be used flexibly by collaborative multi-agent/robotic systems. This paper defines such a task specification language and an abstract data structure called Task Specification Trees which has many of the requisite properties required for mixed-initiative problem solving and adjustable autonomy in a distributed context. A prototype system has been implemented for this delegation framework and has been used practically with collaborative unmanned aircraft systems.
Keywords
Unmanned Aerial Vehicle Constraint Satisfaction Problem Unmanned Aircraft System Node Parameter Task RepresentationPreview
Unable to display preview. Download preview PDF.
References
- 1.Castelfranchi, C., Falcone, R.: Toward a theory of delegation for agent-based systems. In: Robotics and Autonomous Systems, vol. 24, pp. 141–157 (1998)Google Scholar
- 2.Cohen, P., Levesque, H.: Intention is choice with commitment. AI 42(3), 213–261 (1990)MathSciNetMATHGoogle Scholar
- 3.Cohen, P., Levesque, H.: Teamwork. Nous 25(4), 487–512 (1991)CrossRefGoogle Scholar
- 4.Conte, G., Doherty, P.: Vision-based unmanned aerial vehicle navigation using geo-referenced information. EURASIP Journal of Advances in Signal Processing (2009)Google Scholar
- 5.Conte, G., Hempel, M., Rudol, P., Lundström, D., Duranti, S., Wzorek, M., Doherty, P.: High accuracy ground target geo-location using autonomous micro aerial vehicle platforms. In: Proceedings of the AIAA-2008 Guidance, Navigation, and Control Conference (2008)Google Scholar
- 6.Davis, E., Morgenstern, L.: A first-order theory of communication and multi-agent plans. Journal Logic and Computation 15(5), 701–749 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 7.Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman, E., Wiklund, J.: The WITAS unmanned aerial vehicle project. In: Proc. ECAI (2000)Google Scholar
- 8.Doherty, P., Haslum, P., Heintz, F., Merz, T., Persson, T., Wingman, B.: A distributed architecture for intelligent unmanned aerial vehicle experimentation. In: Proc. DARS (2004)Google Scholar
- 9.Doherty, P., Meyer, J.-J.C.: Towards a Delegation Framework for Aerial Robotic Mission Scenarios. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA 2007. LNCS (LNAI), vol. 4676, pp. 5–26. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 10.Duranti, S., Conte, G., Lundström, D., Rudol, P., Wzorek, M., Doherty, P.: LinkMAV, a prototype rotary wing micro aerial vehicle. In: Proc. IFAC Symposium on Automatic Control in Aerospace (2007)Google Scholar
- 11.Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE – a Java agent development framework. In: Multi-Agent Programming - Languages, Platforms and Applications (2005)Google Scholar
- 12.Falcone, R., Castelfranchi, C.: The human in the loop of a delegated agent: The theory of adjustable social autonomy. IEEE Transactions on Systems, Man and Cybernetics–Part A: Systems and Humans 31(5), 406–418 (2001)CrossRefGoogle Scholar
- 13.van der Hoek, W., van Linder, B., Meyer, J.J.C.: An integrated modal approach to rational agents. In: Wooldridge, M., Rao, A. (eds.) Foundations of Rational Agency (1998)Google Scholar
- 14.Kvarnström, J.: Planning for loosely coupled agents using patrial order forward-chaining. In: Proc. ICAPS (2011)Google Scholar
- 15.Kvarnström, J., Doherty, P.: Automated planning for collaborative systems. In: Proceedings of the International Conference on Control, Automation, Robotics and Vision (2010)Google Scholar
- 16.Landén, D., Heintz, F., Doherty, P.: Complex Task Allocation in Mixed-Initiative Delegation: A UAV Case Study (Early Innovation). In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS(LNAI), vol. 7057, pp. 288–303. Springer, Heidelberg (2011)Google Scholar
- 17.MacKenzie, D.C., Arkin, R., Cameron, J.M.: Multiagent mission specification and execution. Auton. Robots 4(1), 29–52 (1997)CrossRefGoogle Scholar
- 18.Merz, T., Rudol, P., Wzorek, M.: Control System Framework for Autonomous Robots Based on Extended State Machines. In: Int. Conf. on Autonomic and Autonomous Systems (2006)Google Scholar
- 19.Olsson, P.M., Kvarnström, J., Doherty, P., Burdakov, O., Holmberg, K.: Generating UAV communication networks for monitoring and surveillance. In: ICARCV (2010)Google Scholar
- 20.Rudol, P., Wzorek, M., Conte, G., Doherty, P.: Micro unmanned aerial vehicle visual servoing for cooperative indoor exploration. In: Proc. of the IEEE Aerospace Conference (2008)Google Scholar
- 21.Simmons, R., Apfelbaum, D.: A task description language for robot control. In: IROS (1998)Google Scholar
- 22.Ulam, P., Endo, Y., Wagner, A., Arkin, R.C.: Integrated mission specification and task allocation for robot teams - design and implementation. In: ICRA (2007)Google Scholar
- 23.Wzorek, M., Conte, G., Rudol, P., Merz, T., Duranti, S., Doherty, P.: From motion planning to control – a navigation framework for an unmanned aerial vehicle. In: Proceedings of the 21st Bristol International Conference on UAV Systems (2006)Google Scholar