Advertisement

Automated Multi-agent Simulation Generation and Validation

  • Philippe Caillou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7057)

Abstract

Multi-agent based simulation (MABS) is increasingly used for social science studies. However, few methodologies and tools exist. A strong issue is the choice of the number of simulation runs and the validation of the results by statistical methods. In this article, we propose a model of tool which automatically generates and runs new simulations until the results are statistically valid using a chi-square test. The choice of the test configuration allows both a general overview of the variable links and a more specific independence analysis. We present a generic tool for any RePast-based simulation and apply it on an Academic Labor Market economic simulation.

Keywords

Multi-Agent Based Simulation Simulation Validation Simulation Tool Chi-square test statistical test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelrod, R.: Advancing the art of simulation in the social sciences. Advances in Complex Systems 7(1), 77–92 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Tesfatsion, L.S.: A constructive approach to economic theory. In: Handbook of Computational Economics. Agent-Based Computational Economics of Handbooks in Economic Series, vol. 2. North-Holland (2006)Google Scholar
  3. 3.
    Heath, B., Hill, R., Ciarallo, F.: A survey of agent-based modeling practices (January 1998 to July 2008). Journal of Artificial Societies and Social Simulation 12(4), 9 (2009)Google Scholar
  4. 4.
    North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations of the repast agent modeling toolkit. ACM Transactions on Modeling and Computer Simulation 16(1), 1–25 (2006)CrossRefGoogle Scholar
  5. 5.
    Caillou, P., Sebag, M.: Modelling a Centralized Academic Labour Market: Efficiency and Fairness. In: ECCS 2008. Complex Systems Society, Jerusalem Israel (2008)Google Scholar
  6. 6.
    Caillou, P., Sebag, M.: Pride and Prejudice on a Centralized Academic Labor Market. In: Artificial Economics 2009. LNEMS, pp. 29–40. Springer, Valladolid Espagne (2009)CrossRefGoogle Scholar
  7. 7.
    Phan, D., Amblard, F.: Multi-agent Modelling and Simulation in the Social and Human Sciences. Bardwell Press (2007), http://www.bardwell-press.co.uk/
  8. 8.
  9. 9.
    Phan, D.: From agent-based computational economics towards cognitive economics. In: Cognitive Economics. Handbook of Computational Economics, pp. 371–398. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: Review and development recommendations. Simulation 82(9), 609–623 (2006)CrossRefGoogle Scholar
  11. 11.
    Kubera, Y., Mathieu, P., Picault, S.: Interaction-oriented agent simulations: From theory to implementation. In: Ghallab, M., Spyropoulos, C., Fakotakis, N., Avouris, N. (eds.) Proceedings of the 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 383–387. IOS Press (2008)Google Scholar
  12. 12.
    Gaillard, F., Kubera, Y., Mathieu, P., Picault, S.: A Reverse Engineering form for Multi Agent Systems. In: Artikis, A., Picard, G., Vercouter, L. (eds.) ESAW 2008. LNCS, vol. 5485, pp. 137–153. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Soldatova, L., Clare, A., Sparkes, A., King, R.D.: An ontology for a robot scientist. Bioinformatics 22, 464–471 (2006); ISMB 2006Google Scholar
  14. 14.
    Amblard, F., Hill, D.R.C., Bernard, S., Truffot, J., Deffuant, G.: http://www.simexplorer.org/
  15. 15.
    Windrum, P., Fagiolo, G., Moneta, A.: Empirical validation of agent-based models: Alternatives and prospects. Journal of Artificial Societies and Social Simulation 10 (2007)Google Scholar
  16. 16.
    Moss, S.: Alternative approaches to the empirical validation of agent-based models. Journal of Artificial Societies and Social Simulation 11 (2007)Google Scholar
  17. 17.
    Wonnacott, T.H., Wonnacott, R.J.: Introductory statistics, 5th edn. Wiley, New York (1990)zbMATHGoogle Scholar
  18. 18.
    Greenwood, P.E., Nikulin, M.S.: A Guide to Chi-Squared Testing. Wiley, New York (1996)zbMATHGoogle Scholar
  19. 19.
    Cochran, W.G.: Some methods for strengthening the common chi-square tests. Biometrics (10), 10–417 (1954)Google Scholar
  20. 20.
    Baiou, M., Balinski, M.: Student admissions and faculty recruitment. Theor. Comput. Sci. 322(2), 245–265 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Philippe Caillou
    • 1
  1. 1.LRI, Universite Paris SudOrsayFrance

Personalised recommendations