Ao Dai: Agent Oriented Design for Ambient Intelligence

  • Amal El Fallah Seghrouchni
  • Andrei Olaru
  • Nga Thi Thuy Nguyen
  • Diego Salomone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7057)


In this paper we present mobile Multi-Agent Systems (MAS) as a specific paradigm to design intelligent and distributed applications in the context of Ambient Intelligence (AmI). We discuss how mobility, coupled with MAS, can be useful to meet the requirements of AmI. Indeed, the main features of mobile MAS, such as natural distribution of the system, inherent intelligence of the agents, and their mobility help to address a large scope of distributed applications in the domain of AmI. Other features of MAS, like multi-agent planning, context-awareness and self-adaptation are also very useful to bring an added value to AmI applications. They allow the implementation of both intelligent and collaborative agent behavior. This paper presents the Ao Dai project, that employs the mobile MAS paradigm, and serves as a prototype AmI environment. We also illustrate the functioning of the application through a scenario of user guidance in a smart environment.


Ambient Intelligence Mobile Multi-Agent Systems Context-Awareness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)CrossRefGoogle Scholar
  2. 2.
    Bordini, R.H., Braubach, L., Dastani, M., El Fallah-Seghrouchni, A., Gómez-Sanz, J.J., Leite, J., O’Hare, G.M.P., Pokahr, A., Ricci, A.: A survey of programming languages and platforms for multi-agent systems. Informatica (Slovenia) 30(1), 33–44 (2006)zbMATHGoogle Scholar
  3. 3.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Report TR2000-381, Dartmouth College (November 2000)Google Scholar
  5. 5.
    Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness. In: CHI 2000 Workshop on the What, Who, Where, When, and How of Context-Awareness, pp. 304–307 (2000)Google Scholar
  6. 6.
    Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios for ambient intelligence in 2010. Technical report, Office for Official Publications of the European Communities (February 2001)Google Scholar
  7. 7.
    Feng, L., Apers, P.M.G., Jonker, W.: Towards Context-Aware Data Management for Ambient Intelligence. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 422–431. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications: Models and approach. Pervasive and Mobile Computing 2(1), 37–64 (2006)CrossRefGoogle Scholar
  9. 9.
    Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling Context Information in Pervasive Computing Systems. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414, pp. 167–180. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Krummenacher, R., Lausen, H., Strang, T., Kopeckỳ, J.: Analyzing the modeling of context with ontologies. In: International Workshop on Context-Awareness for Self-Managing Systems (2007)Google Scholar
  11. 11.
    Ramos, C., Augusto, J.C., Shapiro, D.: Ambient intelligence - the next step for artificial intelligence. IEEE Intelligent Systems 23(2), 15–18 (2008)CrossRefGoogle Scholar
  12. 12.
    Sansonnet, J.-P., Valencia, E.: Terminological heterogeneity between agents using a generalized simplicial representation. In: Gleizes, M.P., Kaminka, G.A., Nowé, A., Ossowski, S., Tuyls, K., Verbeeck, K. (eds.) EUMAS, pp. 363–374. Koninklijke Vlaamse Academie van Belie voor Wetenschappen en Kunsten (2005)Google Scholar
  13. 13.
    Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Advanced Context Modelling, Reasoning and Management as Part of UbiComp, pp. 1–8 (2004)Google Scholar
  14. 14.
    Suna, A., El Fallah Seghrouchni, A.: Programming mobile intelligent agents: An operational semantics. Web Intelligence and Agent Systems 5(1), 47–67 (2004)Google Scholar
  15. 15.
    Viterbo, J., Mazuel, L., Charif, Y., Endler, M., Sabouret, N., Breitman, K., El Fallah Seghrouchni, A., Briot, J.P.: Ambient intelligence: Management of distributed and heterogeneous context knowledge. In: Ambient Intelligence: Management of Distributed and Heterogeneous Context Knowledge. CRC Studies in Informatics Series, pp. 1–44. Chapman & Hall (2008)Google Scholar
  16. 16.
    Weiser, M.: The computer for the 21st century. Scientific American 272(3), 78–89 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Amal El Fallah Seghrouchni
    • 1
  • Andrei Olaru
    • 1
    • 2
  • Nga Thi Thuy Nguyen
    • 1
    • 3
  • Diego Salomone
    • 1
  1. 1.Laboratoire d’Informatique de Paris 6University Pierre et Marie CurieParisFrance
  2. 2.Computer Science DepartmentUniversity Politehnica of BucharestBucharestRomania
  3. 3.Institute of French-Speaking Countries for InformaticsHanoiVietnam

Personalised recommendations