Multi-attribute Preference Logic

  • Koen V. Hindriks
  • Wietske Visser
  • Catholijn M. Jonker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7057)


Preferences for objects are commonly derived from ranked sets of properties or multiple attributes associated with these objects. There are several options or strategies to qualitatively derive a preference for one object over another from a property ranking. We introduce a modal logic, called multi-attribute preference logic, that provides a language for expressing such strategies. The logic provides the means to represent and reason about qualitative multi-attribute preferences and to derive object preferences from property rankings. The main result of the paper is a proof that various well-known preference orderings can be defined in multi-attribute preference logic.


Modal Operator Modal Logic Preference Ordering Propositional Atom Truth Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and Information 4(3), 251–272 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boutilier, C.: Toward a logic for qualitative decision theory. In: 4th International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 75–86 (1994)Google Scholar
  3. 3.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research 21, 135–191 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brewka, G.: A rank based description language for qualitative preferences. In: 16th European Conference on Artificial Intelligence (ECAI), pp. 303–307 (2004)Google Scholar
  5. 5.
    Brewka, G., Benferhat, S., Le Berre, D.: Qualitative choice logic. Artificial Intelligence 157(1-2), 203–237 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness of propositional languages for preference representation. In: 9th International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 203–212 (2004)Google Scholar
  7. 7.
    Girard, P.: Modal Logic for Belief and Preference Change. PhD thesis, Universiteit van Amsterdam (2008)Google Scholar
  8. 8.
    Halpern, J.Y., Lakemeyer, G.: Multi-agent only knowing. Journal of Logic and Computation 11(1), 41–70 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hansson, S.O.: Preference logic. In: Gabbay, D.M., Günthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 4, pp. 319–393. Kluwer (2001)Google Scholar
  10. 10.
    Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: preferences and value trade-offs. Cambridge University Press (1993)Google Scholar
  11. 11.
    Liu, F.: Changing for the Better: Preference Dynamics and Agent Diversity. PhD thesis, Universiteit van Amsterdam (2008)Google Scholar
  12. 12.
    von Wright, G.H.: The Logic of Preference: An Essay. Edinburgh University Press (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Koen V. Hindriks
    • 1
  • Wietske Visser
    • 1
  • Catholijn M. Jonker
    • 1
  1. 1.Man Machine Interaction GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations