Pre-Teide Volcanic Activity on the Northeast Volcanic Rift Zone

  • Valentin R. Troll
  • Frances M. Deegan
  • Audray Delcamp
  • Juan Carlos Carracedo
  • Chris Harris
  • Benjamin van Wyk de Vries
  • Michael S. Petronis
  • Francisco J. Perez-Torrado
  • Jane P. Chadwick
  • Abigail K. Barker
  • Sebastian Wiesmaier
Chapter
Part of the Active Volcanoes of the World book series (AVOLCAN)

Abstract

The northeast rift zone of Tenerife (NERZ) presents a partially eroded volcanic rift that offers a superb opportunity to study the structure and evolution of oceanic rift zones. Field data, structural observations, isotopic dating, magnetic stratigraphy, and isotope geochemistry have recently become available for this rift and provide a reliable temporal framework for understanding the structural and petrological evolution of the entire rift zone. The NERZ appears to have formed in several major pulses of activity with a particularly high production rate in the Pleistocene (ca. 0.99 and 0.56 Ma). The rift underwent several episodes of flank creep and eventual catastrophic collapses driven by intense intrusive activity and gravitational adjustment. Petrologically, a variety of mafic rock types, including crystal-rich ankaramites, have been documented, with most samples isotopically typical of the “Tenerife signal”. Some of the NERZ magmas also bear witness to contamination by hydrothermally altered components of the island edifice and/or sediments. Isotope geochemistry furthermore points to the generation of the NERZ magmas from an upwelling column of mantle plume material mixed with upper asthenospheric mantle. Finally, persistent isotopic similarity through time between the NERZ and the older central edifices on Tenerife provides strong evidence for a genetic link between Tenerife’s principal volcanic episodes.

Keywords

Fractional Crystallisation Canary Island Rift Zone Crustal Contamination Rock Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ablay GJ, Carroll MR, Palmer MR, Martí J, Sparks RSJ (1998) Basanite-phonolite lineages of the teide-pico viejo volcanic complex, tenerife, Canary Islands. J Petrol 39:905–936CrossRefGoogle Scholar
  2. Abratis M, Schmincke H-U, Hansteen TH (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sci 91:562–582CrossRefGoogle Scholar
  3. Acocella V, Neri M (2009) Dike propagation in volcanic edifices: overview and possible developments. Tectonophysics 471:67–77CrossRefGoogle Scholar
  4. Ancochea E, Fuster JE, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of tenerife (Canary Islands) in the light of new K-Ar data. J Volcanol Geotherm Res 44:231–249CrossRefGoogle Scholar
  5. Aparicio A, Bustillo MA, Garcia R, Araña V (2006) Metasedimentary xenoliths in the lavas of the timanfaya eruption (1730–1736, Lanzarote, Canary Islands): metamorphism and contamination processes. Geol Mag 143:181–193CrossRefGoogle Scholar
  6. Aparicio A, Tassinari CCG, García R, Araña V (2010) Sr and Nd isotope composition of the metamorphic, sedimentary and ultramafic xenoliths of lanzarote (Canary Islands): implications for magma sources. J Volcanol Geotherm Res 189:143–150CrossRefGoogle Scholar
  7. Bohrson WA, Reid MR (1997) Genesis of silicic peralkaline volcanic rocks in an ocean island setting by crustal melting and open system processes: Socorro Island, Mexico. J Petrol 38:1137–1166CrossRefGoogle Scholar
  8. Bryan SE, Martí J, Cas RAF (1998) Stratigraphy of the bandas del sur formation: an extracaldera record of quaternary phonolitic explosive eruptions from the las cañadas edifice, tenerife (Canary Islands). Geol Mag 135:605–636CrossRefGoogle Scholar
  9. Carracedo JC (1975) Estudio Paleomagnético de la Isla de Tenerife. Dissertation, Universidad Complutense de MadridGoogle Scholar
  10. Carracedo JC (1979) Paleomagnetismo e Historia Volcánica de Tenerife: Tenerife, Aula de Cultura del Cabildo de Tenerife, p 81Google Scholar
  11. Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large oceanic island volcanoes. J Volcanol Geotherm Res 60:225–242CrossRefGoogle Scholar
  12. Carracedo JC (1996) Morphological and structural evolution of the western Canary Islands: hotspot induced three-armed rifts or regional tectonic trends? J Volcanol Geotherm Res 72:151–162CrossRefGoogle Scholar
  13. Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J Volcanol Geotherm Res 94:1–19CrossRefGoogle Scholar
  14. Carracedo JC, Rodríguez Badiola E, Soler V (1992) The 1730–1736 eruption of Lanzarote: an unusually long, high-magnitude fissural basaltic eruption in the recent volcanism of the Canary Islands. J Volcanol Geotherm Res 53:239–250CrossRefGoogle Scholar
  15. Carracedo JC, Day S, Guillou H, Rodríguez Badiola E, Canas JA, Pérez Torrado FJ (1998) Hotspot volcanism close to a passive continental margin: the Canary Islands. Geol Mag 135:591–604CrossRefGoogle Scholar
  16. Carracedo JC, Rodríguez Badiola E, Guillou H, De La Nuez J, Pérez Torrado FJ (2001) Geology and volcanology of La Palma and El Hierro, Western Canaries. Estud Geol 57:175–273CrossRefGoogle Scholar
  17. Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Criado C, Hansen A, Arnay M, González Reimers E, Fra-Paleo U, González Pérez R (2006) Los volcanes del Parque Nacional del Teide: El Teide, Pico Viejo y las dorsales activas de Tenerife. In: Carracedo JC (ed) Los Volcanes del Parque Nacional del Teide, Serie Técnica: Madrid, Organismo de Parques Nacionales, Ministerio del Medio Ambiente, Madrid, pp 175-199Google Scholar
  18. Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 19:1027–1051CrossRefGoogle Scholar
  19. Carracedo JC, Guillou H, Nomade S, Rodríguez Badiola E, Paris R, Troll VR, Wiesmaier S, Delcamp A, Fernández-Turiel JL (2011) Evolution of ocean-island rifts: The northeast rift zone of Tenerife, Canary Islands. Geol Soc Am Bull 123:562–584CrossRefGoogle Scholar
  20. Carracedo JC, Troll VR (2012) Structural and geological elements of the Teide Volcanic complex: rift zones and gravitational collapses (this volume)Google Scholar
  21. Clague DA, Moore JG, Dixon JE, Friesen WB (1995) Petrology of submarine lavas from Kilauea’s Puna Ridge. Hawaii. J Petrol 36:299–349CrossRefGoogle Scholar
  22. Cousens BL, Spera FJ, Dobson PF (1993) Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands: strontium, neodymium, lead, and oxygen isotopic evidence. Geochim Cosmochim Acta 57:631–640CrossRefGoogle Scholar
  23. Deegan FM, Troll VR, Barker AK, Chadwick JP, Harris C, Delcamp A, Carracedo JC (2012) Crustal versus source processes recorded in dykes of the Northeast volcanic rift zone of Tenerife, Canary Islands. Chem Geol 334:324–344CrossRefGoogle Scholar
  24. Delcamp A, Petronis MS, Troll VR, Carracedo JC, van Wyk de Vries B, Perez-Torrado FJ (2010) Vertical axis rotation of the upper portions of the north-east rift of Tenerife Island inferred from paleomagnetic data. Tectonophysics 492:40–59CrossRefGoogle Scholar
  25. Delcamp A, Troll VR, van Wyk de Vries B, Carracedo JC, Petronis MS, Pérez-Torrado FJ, Deegan FM (2012) Stabilisation and destabilization of ocean island rift-zones: the NE-rift of Tenerife, Canary Islands. Bull Volcanol 74:963–980Google Scholar
  26. Dieterich JH (1988) Growth and persistence of Hawaiian volcanic rift zones. J Geophys Res 93:4258–4270CrossRefGoogle Scholar
  27. Edgar CJ, Wolff JA, Nichols HJ, Cas RAF, Martí J (2002) A complex Quaternary ignimbrite-forming phonolitic eruption: the Poris member of the Diego Hernández Formation (Tenerife, Canary Islands). J Volcanol Geotherm Res 118:99–130CrossRefGoogle Scholar
  28. Fagereng A, Harris C, LaGrange M, Stevens G (2008) Stable isotope study of the Archean rocks of the Vredefort impact structure, central Kaapvaal Craton, South Africa. Contrib Mineral Petrol 155:63–78CrossRefGoogle Scholar
  29. Fiske R, Jackson ED (1972) Orientation and growth of Hawaiian volcanic rifts: the effect of regional structure and gravitational stresses. Proc R Soc London 329:299–326CrossRefGoogle Scholar
  30. Gaffney AM, Nelson BK, Reisberg L, Eiler J (2005) Oxygen-osmium isotope systematics of West Maui lavas: a record of shallow-level magmatic processes. Earth Planet Sci Lett 239:122–139CrossRefGoogle Scholar
  31. Garcia MO, Ito E, Eiler JM, Pietruszka AJ (1998) Crustal contamination of Kilauea volcano magmas revealed by oxygen isotope analyses of glass and olivine from Puu Oo eruption lavas. J Petrol 39:803–817CrossRefGoogle Scholar
  32. Geldmacher J, Hoernle K (2000) The 72 Ma geochemical evolution of the Madeira hotspot (eastern North Atlantic): recycling of Paleozoic (≤500 Ma) oceanic lithosphere. Earth Planet Sci Lett 183:73–92CrossRefGoogle Scholar
  33. Geldmacher J, Hoernle K (2001) Corrigendum to: ‘The 72 Ma geochemical evolution of the Madeira hotspot (eastern North Atlantic): recycling of Paleozoic (≤ 500 Ma) oceanic lithosphere’ (Earth Planet Sci Lett 2000 183:73–92). Earth Planet Sci Lett 186:333CrossRefGoogle Scholar
  34. Gudmundsson A (2002) Emplacement and arrest of sheets and dykes in central volcanoes. J Volcanol Geotherm Res 116:279–298CrossRefGoogle Scholar
  35. Guillou H, Carracedo JC, Pérez Torrado F, Rodríguez Badiola E (1996) K-Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. J Volcanol Geotherm Res 73:141–155CrossRefGoogle Scholar
  36. Guillou H, Carracedo JC, Paris R, Pérez Torrado FJ (2004) K/Ar ages and magnetic stratigraphy of the miocene-pliocene shield volcanoes of tenerife, canary islands: implications for the early evolution of tenerife and the canarian hotspot age progression. Earth Planet Sci Lett 222:599–614CrossRefGoogle Scholar
  37. Gurenko AA, Chaussidon M, Schmincke H-U (2001) Magma ascent and contamination beneath one intraplate volcano: evidence from S and O isotopes in glass inclusions and their host clinopyroxenes from Miocene basaltic hyaloclastites southwest of Gran Canaria (Canary Islands). Geochimica et Cosmochimica Acta 65:4359–4374CrossRefGoogle Scholar
  38. Gurenko AA, Hoernle KA, Hauff F, Schmincke H-U, Han D, Miura YN, Kaneoka I (2006) Major, trace element and Nd-Sr-Pb-O-He-Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into mantle and crustal processes. Chem Geol 233:75–112CrossRefGoogle Scholar
  39. Gurenko AA, Sobolev AV, Hoernlae KA, Hauff F, Schmincke H-U (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the canary plume: a mixed-up mantle. Earth Planet Sci Lett 277:514–524CrossRefGoogle Scholar
  40. Hansen A (2009) Volcanología y Geomorfología de la Etapa de Rejuvenecimiento Plio-Pleistocena de Gran Canaria (Islas Canarias) Ph.D. thesis, Las Palmas, Gran Canaria, University of Las PalmasGoogle Scholar
  41. Hansteen TH, Troll VR (2003) Oxygen isotope composition of xenoliths from the oceanic crust and volcanic edifice beneath Gran Canaria (Canary Islands): consequences for crustal contamination of ascending magmas. Chem Geol 193:181–193CrossRefGoogle Scholar
  42. Harris C, Smith HS, le Roex AP (2000) Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough Island lavas: variation with fractional crystallization and evidence for assimilation. Contrib Mineral Petrol 138:164–175CrossRefGoogle Scholar
  43. Hart SR (1984) A large scale isotope anomaly in the southern hemisphere mantle. Nature 309:753–757CrossRefGoogle Scholar
  44. Hoernle K (1998) Geochemistry of Jurassic ocean crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880CrossRefGoogle Scholar
  45. Hoernle K, Schmincke H-U (1993) The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J Petrol 34:599–626CrossRefGoogle Scholar
  46. Hoernle K, Tilton G, Schmincke H-U (1991) Sr-Nd-Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth Planet Sci Lett 106:44–63CrossRefGoogle Scholar
  47. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  48. Ito E, White WM, Göpel C (1987) The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem Geol 62:157–176CrossRefGoogle Scholar
  49. Kent AJR, Norman MD, Hutcheon ID, Stolper EM (1999) Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi Seamount, Hawaii. Chem Geol 156:299–319CrossRefGoogle Scholar
  50. Legendre C, Maury RC, Caroff M, Guillou H, Cotton J, Chauvel C, Bollinger C, Hémond C, Guille G, Blais S, Rossi P, Savanier D (2005) Origin of exceptionally abundant phonolites on Ua Pou Island (Marquesas, French Polynesia): Partial melting of basanites followed by crustal contamination. J Petrol 46:1925–1962CrossRefGoogle Scholar
  51. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Blackwell, OxfordGoogle Scholar
  52. Longpré M-A, Troll VR, Walter TR, Hansteen TH (2009) Volcanic and geochemical evolution of the Teno massif, Tenerife, Canary Islands: some repercussions of giant landslides on ocean island magmatism. Geochem Geophys Geosy 10:Q12017. doi: 10.1029/2009GC002892
  53. Manconi A, Longpré M-A, Walter TR, Troll VR, Hansteen TH (2009) The effects of flank collapses on volcano plumbing systems. Geology 37:1099–1102CrossRefGoogle Scholar
  54. Marcantonio F, Zindler A, Elliott T, Staudigel H (1995) Os isotope systematics of La Palma, Canary Islands: evidence for recycled crust in the mantle source of HIMU ocean islands. Earth Planet Sci Lett 133:197–410Google Scholar
  55. Mathieu L, van Wyk de Vries B, Troll VR, Holohan EP (2008) Dykes, cups, saucers and sills: Analogue experiments on magma intrusion into brittle rocks. Earth Planet Sci Lett 271:1–13CrossRefGoogle Scholar
  56. Navarro JM, Farrujia I (1989) Plan Hidrológico Insular de Tenerife: Zonificación Hidrológica, Aspectos Geológicos e Hidrogeológicos: Cabildo Insular de Tenerife, Santa Cruz de Tenerife, p 133Google Scholar
  57. Neumann E-R, Wulff-Pedersen E, Simonsen SL, Pearson NJ, Martí J, Mitjavila J (1999) Evidence for fractional crystallization of periodically refilled magma chambers in Tenerife, Canary Islands. J Petrol 40:1089–1123CrossRefGoogle Scholar
  58. Palacz ZA, Wolff JA (1989) Strontium, neodymium and lead isotope characteristics of the Granadilla Pumice, Tenerife: a study of the causes of strontium isotope disequilibrium in felsic pyroclastic deposits. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Publ 42: 147–159 Google Scholar
  59. Roeser HA (1982) Magnetic anomalies in the magnetic quiet zone off Morocco. In: Rad U, Hinz K, Sarnthein M, Seibold E (eds) Geology of the northwest african continental margin. Springer, Berlin, pp 61–68CrossRefGoogle Scholar
  60. Sheppard SMF, Harris C (1985) Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with seawater. Contrib Mineral Petrol 91:74–81CrossRefGoogle Scholar
  61. Simonsen SL, Neumann E-R, Seim K (2000) Sr-Nd-Pb isotope and trace-element geochemistry evidence for a young HIMU source and assimilation at Tenerife (Canary Island). J Volcanol Geotherm Res 103:299–312CrossRefGoogle Scholar
  62. Swanson DA, Duffield WA, Fiske RS (1976) Displacements of the south flank of Kilauea Volcano: the result of forceful intrusions of magma into the rift zones. US Geol Surv Prof Paper 963:39Google Scholar
  63. Széréméta N, Laj C, Guillou H, Kissel C, Mazaud A, Carracedo JC (1999) Geomagnetic paleosecular variation in the brunhes period, from the island of El Hierro (Canary Islands). Earth Planet Sci Lett 165:241–253CrossRefGoogle Scholar
  64. Thirlwall MF (1997) Pb isotopic evidence for OIB derivation from young HIMU mantle. Chem Geol 139:51–74CrossRefGoogle Scholar
  65. Thirlwall MF, Singer BS, Marriner GF (2000) 39Ar-40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 103:247–297CrossRefGoogle Scholar
  66. Troll VR (2001) Evolution of large peralkaline silicic magma chambers and associated caldera systems: a case study from Gran Canaria, Canary Islands. Ph. D. thesis Christian-Albrechts-Universität zu KielGoogle Scholar
  67. Troll VR, Schmincke H-U (2002) Alkali-feldspar in compositionally zoned peralkaline rhyolite/trachyte ignimbrite “A”, Gran Canaria: implications for magma mixing and crustal recycling. J Petrol 43:243–270CrossRefGoogle Scholar
  68. Troll VR, Klügel A, Longpré M-A, Burchardt S, Deegan FM, Carracedo JC, Wiesmaier S, Kueppers U, Dahren B, Blythe LS, Hansteen TH, Freda C, Budd DA, Jolis EM, Jonsson E, Meade FC, Berg SE, Mancini L, Polacci M, Pedroza K (2012) Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption. Solid Earth 3:97–110CrossRefGoogle Scholar
  69. Vennemann TW, Smith HS (1990) The rate and temperature of reaction of ClF3 with silicate minerals, and their relevance to oxygen isotope analysis. Chem Geol 86:83–88Google Scholar
  70. Walker GPL (1986) Koolau dike complex, Oahu: Intensity and origin of a sheeted-dike complex high in a Hawaiian volcanic edifice. Geology 14:310–313CrossRefGoogle Scholar
  71. Walker GPL (1987) The dike complex of Koolau Volcano, Oahu: internal structure of a Hawaiian Rift Zone. In: Decker RW, Wright RL, Stauffer PJ (eds) Volcanism in Hawaii, vol 2. US Geol Surv Prof Pap 1350:961–993Google Scholar
  72. Walker GPL (1992) Coherent intrusion complexes in large basaltic volcanoes; a new structural model. In: Harris PG, Cox KG, Baker PE (eds) Essays on magmas and other earth fluids, vol 50. Elsevier, The Netherland, pp 41–54Google Scholar
  73. Walter TR, Schmincke H-U (2002) Rifting, recurrent landsliding and Miocene structural reorganization on NW-Tenerife (Canary Islands). Int J Earth Sci 91:615–628CrossRefGoogle Scholar
  74. Walter TR, Troll VR (2003) Experiments on rift zone evolution in unstable volcanic edifices. J Volcanol Geotherm Res 127:20–107CrossRefGoogle Scholar
  75. Walter TR, Troll VR, Cailleau B, Belousov A, Schmincke H-U, Amelung F, v.d.Bogaard P (2005) Rift zone reorganisation through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands. Bull Volcanol 67:281–291CrossRefGoogle Scholar
  76. Wiesmaier S (2010) Magmatic differentiation and bimodality in oceanic island settings—implications for the petrogenesis of magma in Tenerife, Spain. PhD thesis, University of Dublin, Trinity CollegeGoogle Scholar
  77. Wiesmaier S, Troll VR, Carracedo JC, Ellam RM, Bindeman I, Wolff JA (2012) Bimodality of lavas in the Teide–Pico Viejo succession in Tenerife—the role of crustal melting in the origin of recent phonolites. J Petrol 53:2465–2495CrossRefGoogle Scholar
  78. Wolff JA, Grandy JS, Larson PB (2000) Interaction of mantle-derived magma with island crust? Trace element and oxygen isotope data from the Diego Hernandez Formation, Las Cañadas, Tenerife. J Volcanol Geotherm Res 130:343–366CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valentin R. Troll
    • 1
  • Frances M. Deegan
    • 1
    • 2
  • Audray Delcamp
    • 3
  • Juan Carlos Carracedo
    • 4
  • Chris Harris
    • 5
  • Benjamin van Wyk de Vries
    • 6
  • Michael S. Petronis
    • 7
  • Francisco J. Perez-Torrado
    • 4
  • Jane P. Chadwick
    • 8
  • Abigail K. Barker
    • 1
  • Sebastian Wiesmaier
    • 9
  1. 1.Department of Earth Sciences (CEMPEG)Uppsala UniversityUppsalaSweden
  2. 2.Laboratory for Isotope GeologySwedish Museum of Natural HistoryStockholmSweden
  3. 3.Department of GeographyVrije Universiteit BrusselsBrusselsBelgium
  4. 4.Departamento de Física (GEOVOL)Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran CanariaIslandsSpain
  5. 5.Department of Geological SciencesUniversity of Cape TownRondeboschSouth Africa
  6. 6.Laboratoire Magmas et VolcansUniversité Blaise Pascal, ClermontFerrandFrance
  7. 7.Environmental Geology Natural Resource Management DepartmentNew Mexico Highlands UniversityNew MexicoU.S.A
  8. 8.Science GalleryTrinity College DublinDublin 2Ireland
  9. 9.Department of Earth and Environmental SciencesLudwig-Maximilians Universität (LMU)MunichGermany

Personalised recommendations