Small Point Sets for Simply-Nested Planar Graphs

  • Patrizio Angelini
  • Giuseppe Di Battista
  • Michael Kaufmann
  • Tamara Mchedlidze
  • Vincenzo Roselli
  • Claudio Squarcella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)


A point set P ⊆ ℝ2 is universal for a class \(\cal G\) if every graph of \({\cal G}\) has a planar straight-line embedding into P. We prove that there exists a \(O(n (\frac{\log n}{\log\log n})^2)\) size universal point set for the class of simply-nested n-vertex planar graphs. This is a step towards a full answer for the well-known open problem on the size of the smallest universal point sets for planar graphs [1, 5, 9].


  1. 1.
    Open problem garden,
  2. 2.
    Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and embedding in linear time. Journal of Graph Algorithms and Applications 9 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs. J. ACM 41, 153–180 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bose, P.: On embedding an outer-planar graph in a point set. Computat. Geom. Th. Appl. 23(3), 303–312 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Alg. Appl. 10(2), 353–366 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs  20, 83–86 (1989)Google Scholar
  7. 7.
    Chrobak, M., Nakano, S.: Minimum-width grid drawings of plane graphs. Computational Geometry 11(1), 29–54 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cimikowski, R.J.: Finding hamiltonian cycles in certain planar graphs. Information Processing Letters 35(5), 249–254 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Demaine, E.D., Mitchell, J.S.B., O’Rourke, J.: The open problems project,
  10. 10.
    Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gritzmann, P., Pach, B.M.J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. Amer. Math. Mont. 98, 165–166 (1991)CrossRefGoogle Scholar
  12. 12.
    Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Information Processing Letters 92(2), 95–98 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–148 (1990)Google Scholar
  14. 14.
    Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38, 36–67 (1989)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Giuseppe Di Battista
    • 1
  • Michael Kaufmann
    • 2
  • Tamara Mchedlidze
    • 3
  • Vincenzo Roselli
    • 1
  • Claudio Squarcella
    • 1
  1. 1.Dip. di Informatica e AutomazioneRoma Tre UniversityItaly
  2. 2.Wilhelm-Schickard-Institut für InformatikUniversität TübingenGermany
  3. 3.Dept. of Math.National Technical University of AthensGreece

Personalised recommendations