On Point-Sets That Support Planar Graphs

  • Vida Dujmovic
  • William Evans
  • Sylvain Lazard
  • William Lenhart
  • Giuseppe Liotta
  • David Rappaport
  • Stephen Wismath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)

Abstract

A universal point-set supports a crossing-free drawing of any planar graph. For a planar graph with n vertices, if bends on edges of the drawing are permitted, universal point-sets of size n are known, but only if the bend-points are in arbitrary positions. If the locations of the bend-points must also be specified as part of the point-set, we prove that any planar graph with n vertices can be drawn on a universal set \(\cal S\) of O(n2/logn) points with at most one bend per edge and with the vertices and the bend points in \(\cal S\). If two bends per edge are allowed, we show that O(nlogn) points are sufficient, and if three bends per edge are allowed, Θ(n) points are sufficient. When no bends on edges are permitted, no universal point-set of size o(n2) is known for the class of planar graphs. We show that a set of n points in balanced biconvex position supports the class of maximum degree 3 series-parallel lattices.

References

  1. 1.
    Bose, P.: On embedding an outer-planar graph on a point set. Computational Geometry: Theory and Applications 23, 303–312 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs. SIGACT News 20(4), 83–86 (1989)CrossRefGoogle Scholar
  4. 4.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, NJ (1999)MATHGoogle Scholar
  6. 6.
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs. Computational Geometry 30, 1–23 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Everett, H., Lazard, S., Liotta, G., Wismath, S.: Universal sets of n points for one-bend drawings of planar graphs with n vertices. Discrete and Computational Geometry 43(2), 272–288 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Amer. Math. Monthly 98(2), 165–166 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM-SIAM Sympos. Discrete Algorithms (SODA 1990), pp. 138–148 (1990)Google Scholar
  12. 12.
    Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series-parallel digraphs. SIAM J. Comput. 11(2), 298–313 (1982)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vida Dujmovic
    • 1
  • William Evans
    • 2
  • Sylvain Lazard
    • 3
  • William Lenhart
    • 4
  • Giuseppe Liotta
    • 5
  • David Rappaport
    • 6
  • Stephen Wismath
    • 7
  1. 1.Carleton UniversityCanada
  2. 2.University of British ColumbiaCanada
  3. 3.INRIA Nancy, LORIAFrance
  4. 4.Williams UniversityU.S.A.
  5. 5.Universitá degli Studi di PeruguaItaly
  6. 6.Queen’s UniversityCanada
  7. 7.University of LethbridgeCanada

Personalised recommendations