The Open Graph Archive: A Community-Driven Effort

  • Christian Bachmaier
  • Franz Josef Brandenburg
  • Philip Effinger
  • Carsten Gutwenger
  • Jyrki Katajainen
  • Karsten Klein
  • Miro Spönemann
  • Matthias Stegmaier
  • Michael Wybrow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)

Introduction

A graphbase, a term coined by Knuth [7], is a database of graphs and computer programs that generate, analyze, manipulate, and visualize graphs. The terms graphlibrary and grapharchive are often used as synonyms for this term. Our vision is to provide an infrastructure and quality standards for a public graphbase, named the Open Graph Archive, that is accessible to researchers and other interested parties around the world via the worldwide web. This paper describes the current work undertaken towards this goal; the paper is also intended to be a call for participation since this will be a community-driven effort where most of the content will be provided by users of the system.

References

  1. 1.
    Boisvert, R.F., Pozo, R., Remington, K., Barrett, R., Dongarra, J.J.: The matrix market: A web resource for test matrix collections. In: Quality of Numerical Software: Assessment and Enhancement. IFIP Conference Series, vol. 76, pp. 125–137. Chapman & Hall (1997), Graphs available at http://math.nist.gov/MatrixMarket
  2. 2.
    Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1) (2011), Graphs available at http://www.cise.ufl.edu/research/sparse/matrices/
  3. 3.
    Di Battista, G., Garg, A., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl. 7(5-6), 303–325 (1997), Graphs available at http://www.graphdrawing.org/ MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Di Battista, G., Garg, A., Tamassia, R., Tassinari, E., Vargiu, F.: Drawing directed acyclic graphs: An experimental study. J. Comput. Geom. Apppl. 10(6), 623–648 (2000), Graphs available at http://www.graphdrawing.org/ MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    10th DIMACS implementation challenge: Graph partitioning and graph clustering, http://www.cc.gatech.edu/dimacs10/downloads.shtml (accessed August 2011)
  6. 6.
    Effinger, P., Kaufmann, M., Meinert, S., Stegmaier, M.: GraphArchive: An online graph data store. Technical Report WSI-2011-03, Wilhelm-Schickard-Institut, Eberhard-Karls-Universität Tübingen (2011)Google Scholar
  7. 7.
    Knuth, D.: The Stanford GraphBase: A Platform for Combinatorial Computing. ACM Press (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Bachmaier
    • 1
  • Franz Josef Brandenburg
    • 1
  • Philip Effinger
    • 2
  • Carsten Gutwenger
    • 3
  • Jyrki Katajainen
    • 4
  • Karsten Klein
    • 3
  • Miro Spönemann
    • 5
  • Matthias Stegmaier
    • 2
  • Michael Wybrow
    • 6
  1. 1.University of PassauGermany
  2. 2.Eberhard-Karls-Universität TübingenGermany
  3. 3.Technische Universität DortmundGermany
  4. 4.University of CopenhagenDenmark
  5. 5.Christian-Albrechts-Universität zu KielGermany
  6. 6.Monash UniversityAustralia

Personalised recommendations