Upward Point Set Embeddability for Convex Point Sets Is in P

  • Michael Kaufmann
  • Tamara Mchedlidze
  • Antonios Symvonis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)

Abstract

In this paper, we present a polynomial dynamic programming algorithm that tests whether a n-vertex directed tree T has an upward planar embedding into a convex point-set S of size n. We also note that our approach can be extended to the class of outerplanar digraphs. This nontrivial and surprising result implies that any given digraph can be efficiently tested for an upward planar embedding into a given convex point set.

References

  1. 1.
    Angelini, P., Frati, F., Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A.: Upward Geometric Graph Embeddings into Point Sets. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 25–37. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. Theor. Comput. Sci. 408(2-3), 129–142 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F., Kobourov, S., Liotta, G.: Upward straight-line embeddings of directed graphs into point sets. Computat. Geom. Th. Appl. 43, 219–232 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bose, P.: On embedding an outer-planar graph in a point set. Computat. Geom. Th. Appl. 23(3), 303–312 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. J. Graph Alg. Appl. 1(2), 1–15 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Alg. Appl. 10(2), 353–366 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.: k-colored point-set embeddability of outerplanar graphs. J. Graph Alg. Appl. 12(1), 29–49 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A.: Upward Point-Set Embeddability. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 272–283. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing Upward Topological Book Embeddings of Upward Planar Digraphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 172–183. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Giordano, F., Liotta, G., Whitesides, S.: Embeddability Problems for Upward Planar Digraphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 242–253. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. Amer. Math. Mont. 98, 165–166 (1991)CrossRefGoogle Scholar
  12. 12.
    Halton, J.: On the thickness of graphs of given degree. Inf. Sci. 54, 219–238 (1991)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs: Part I. SIAM J. Comput. 28(4), 1510–1539 (1999)CrossRefMATHGoogle Scholar
  14. 14.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Alg. Appl. 6(1), 115–129 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kaufmann, M., Mchedlidze, T., Symvonis, A.: Upward point set embeddability for convex point sets is in P. Technical report. arXiv:1108.3092, http://arxiv.org/abs/1108.3092
  16. 16.
    Mchedlidze, T., Symvonis, A.: On ρ-Constrained Upward Topological Book Embeddings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 411–412. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combinatorics 17(4), 717–728 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Kaufmann
    • 1
  • Tamara Mchedlidze
    • 2
  • Antonios Symvonis
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenGermany
  2. 2.Dept. of MathematicsNational Technical University of AthensGreece

Personalised recommendations