Advertisement

Monotone Drawings of Graphs with Fixed Embedding

  • Patrizio Angelini
  • Walter Didimo
  • Stephen Kobourov
  • Tamara Mchedlidze
  • Vincenzo Roselli
  • Antonios Symvonis
  • Stephen Wismath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)

Abstract

A drawing of a graph is a monotone drawing if for every pair of vertices u and v, there is a path drawn from u to v that is monotone in some direction. In this paper we investigate planar monotone drawings in the fixed embedding setting, i.e., a planar embedding of the graph is given as part of the input that must be preserved by the drawing algorithm. In this setting we prove that every planar graph on n vertices admits a planar monotone drawing with at most two bends per edge and with at most 4n – 10 bends in total; such a drawing can be computed in linear time and requires polynomial area. We also show that two bends per edge are sometimes necessary on a linear number of edges of the graph. Furthermore, we investigate subclasses of planar graphs that can be realized as embedding-preserving monotone drawings with straight-line edges, and we show that biconnected embedded planar graphs and outerplane graphs always admit such drawings, which can be computed in linear time.

References

  1. 1.
    Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone Drawings of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 13–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. J. Graph Algorithms Appl. 14(1), 19–51 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arkin, E.M., Connelly, R., Mitchell, J.S.B.: On monotone paths among obstacles with applications to planning assemblies. In: Symposium on Computational Geometry, pp. 334–343 (1989)Google Scholar
  4. 4.
    Brocot, A.: Calcul des rouages par approximation, nouvelle methode. Revue Chronometrique 6, 186–194 (1860)Google Scholar
  5. 5.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)MATHGoogle Scholar
  6. 6.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25, 956–997 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Garg, A., Tamassia, R.: Upward planarity testing. Order 12, 109–133 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Huang, W., Eades, P., Hong, S.-H.: A graph reading behavior: Geodesic-path tendency. In: PacificVis, pp. 137–144 (2009)Google Scholar
  9. 9.
    Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. Discrete & Computational Geometry 44(3), 686–705 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344(1), 3–14 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Stern, M.A.: Ueber eine zahlentheoretische funktion. Journal fur die reine und angewandte Mathematik 55, 193–220 (1858)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Walter Didimo
    • 2
  • Stephen Kobourov
    • 3
  • Tamara Mchedlidze
    • 4
  • Vincenzo Roselli
    • 1
  • Antonios Symvonis
    • 4
  • Stephen Wismath
    • 5
  1. 1.Università Roma TreItaly
  2. 2.Università degli Studi di PerugiaItaly
  3. 3.University of ArizonaUSA
  4. 4.National Technical University of AthensGreece
  5. 5.University of LethbridgeCanada

Personalised recommendations