Hardness of Approximate Compaction for Nonplanar Orthogonal Graph Drawings

  • Michael J. Bannister
  • David Eppstein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)

Abstract

We show that several problems of compacting orthogonal graph drawings to use the minimum number of rows or the minimum possible area cannot be approximated to within better than a polynomial factor in polynomial time unless P = NP. However, there is a fixed-parameter-tractable algorithm for testing whether a drawing can be compacted to a given number of rows.

References

  1. 1.
    Biedl, T.C., Madden, B.P., Tollis, I.G.: The three-phase method: a unified approach to orthogonal graph drawing. Int. J. Comput. Geom. Appl. 10(6), 553–580 (2000), doi:10.1142/S0218195900000310MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bridgeman, S.S., Di Battista, G., Didimo, W., Liotta, G., Tamassia, R., Vismara, L.: Turn-regularity and optimal area drawings of orthogonal representations. Computational Geometry: Theory and Applications 16(1), 53–93 (2000), doi:10.1016/S0925-7721(99)00054-1MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Eades, P., Hong, S.-H., Poon, S.-H.: On Rectilinear Drawing of Graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 232–243. Springer, Heidelberg (2010), doi:10.1007/978-3-642-11805-0_23CrossRefGoogle Scholar
  4. 4.
    Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal Graph Drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 121–171. Springer, Heidelberg (2001), doi:10.1007/3-540-44969-8_6CrossRefGoogle Scholar
  5. 5.
    Eppstein, D.: The Topology of Bendless Three-Dimensional Orthogonal Graph Drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 78–89. Springer, Heidelberg (2009), doi:10.1007/978-3-642-00219-9_9CrossRefGoogle Scholar
  6. 6.
    Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: IEEE Pacific Visualization Symposium (PacificVIS 2008), pp. 41–46 (2008), doi:10.1109/PACIFICVIS.2008.4475457Google Scholar
  7. 7.
    Lick, D.R., White, A.T.: k-degenerate graphs. Canadian Journal of Mathematics 22, 1082–1096 (1970), doi:10.4153/CJM-1970-125-1MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Maňuch, J., Patterson, M., Poon, S.-H., Thachuk, C.: Complexity of Finding Non-Planar Rectilinear Drawings of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 305–316. Springer, Heidelberg (2011), doi:10.1007/978-3-642-18469-7_28CrossRefGoogle Scholar
  9. 9.
    Patrignani, M.: On the complexity of orthogonal compaction. Computational Geometry 19(1), 47–67 (2001), doi:10.1016/S0925-7721(01)00010-4MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987), doi:10.1137/0216030MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing 3(1), 103–128 (2007), doi:10.4086/toc.2007.v003a006MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael J. Bannister
    • 1
  • David Eppstein
    • 1
  1. 1.Computer Science DepartmentUniversity of CaliforniaIrvineUSA

Personalised recommendations