GD 2011: Graph Drawing pp 343-354

• Michael J. Pelsmajer
• Marcus Schaefer
• Daniel Štefankovič
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)

Abstract

In a drawing of a graph, two edges form an odd pair if they cross each other an odd number of times. A pair of edges is independent if they share no endpoint. For a graph G, let ocr(G) be the smallest number of odd pairs in a drawing of G and let iocr(G) be the smallest number of independent odd pairs in a drawing of G. We construct a graph G with iocr(G) < ocr(G), answering a question by Székely, and—for the first time—giving evidence that crossings of adjacent edges may not always be trivial to eliminate.

The graph G is based on a separation of iocr and ocr for monotone drawings of ordered graphs. A drawing of a graph is x-monotone if every edge intersects every vertical line at most once and every vertical line contains at most one vertex. A graph is ordered if each of its vertices is assigned a distinct x-coordinate. We construct a family of ordered graphs such that for x-monotone drawings, the monotone variants of ocr and iocr satisfy mon-iocr(G) < O(mon − iocr(G)1/2).

References

1. 1.
Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)
2. 2.
Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone drawings, and level-planarity. Accepted for WG (2011)Google Scholar
3. 3.
Chojnacki, C., Hanani, H.: Über wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fundamenta Mathematicae 23, 135–142 (1934)
4. 4.
Kainen, P.C.: A lower bound for crossing numbers of graphs with applications to K n, K p, q, and Q(d). J. Combinatorial Theory Ser. B 12, 287–298 (1972)
5. 5.
Pach, J., Tóth, G.: Thirteen problems on crossing numbers. Geombinatorics 9(4), 194–207 (2000)
6. 6.
Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser. B 80(2), 225–246 (2000)
7. 7.
Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1), 39–47 (2004)
8. 8.
Pelsmajer, M.J., Schaefer, M., Stasi, D.: Strong Hanani–Tutte on the projective plane. SIAM Journal on Discrete Mathematics 23(3), 1317–1323 (2009)
9. 9.
Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. J. Combin. Theory Ser. B 97(4), 489–500 (2007)
10. 10.
Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Odd crossing number and crossing number are not the same. Discrete Comput. Geom. 39(1), 442–454 (2008)
11. 11.
Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings on surfaces. European Journal of Combinatorics 30(7), 1704–1717 (2009)
12. 12.
Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing independently even crossings. SIAM Journal on Discrete Mathematics 24(2), 379–393 (2010)
13. 13.
Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Crossing numbers of graphs with rotation systems. Algorithmica 60, 679–702 (2011), doi:10.1007/s00453-009-9343-y
14. 14.
Székely, L.A.: A successful concept for measuring non-planarity of graphs: the crossing number. Discrete Math. 276(1-3), 331–352 (2004)
15. 15.
Székely, L.A.: Progress on Crossing Number Problems. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 53–61. Springer, Heidelberg (2005)
16. 16.
Székely, L.A.: An optimality criterion for the crossing number. Ars Math. Contemp. 1(1), 32–37 (2008)
17. 17.
Tóth, G.: Note on the pair-crossing number and the odd-crossing number. Discrete Comput. Geom. 39(4), 791–799 (2008)
18. 18.
Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8, 45–53 (1970)
19. 19.
Valtr, P.: On the pair-crossing number. In: Combinatorial and Computational Geometry. Math. Sci. Res. Inst. Publ., vol. 52, pp. 569–575. Cambridge University Press, Cambridge (2005)Google Scholar
20. 20.
West, D.: Open problems - graph theory and combinatorics, http://www.math.uiuc.edu/~west/openp/ (accessed April 7, 2005)