Planar and Poly-arc Lombardi Drawings

  • Christian A. Duncan
  • David Eppstein
  • Michael T. Goodrich
  • Stephen G. Kobourov
  • Maarten Löffler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)

Abstract

In Lombardi drawings of graphs, edges are represented as circular arcs, and the edges incident on vertices have perfect angular resolution. However, not every graph has a Lombardi drawing, and not every planar graph has a planar Lombardi drawing. We introduce k-Lombardi drawings, in which each edge may be drawn with k circular arcs, noting that every graph has a smooth 2-Lombardi drawing. We show that every planar graph has a smooth planar 3-Lombardi drawing and further investigate topics connecting planarity and Lombardi drawings.

Keywords

Planar Graph Angular Resolution Equilateral Triangle Correct Angle White Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aichholzer, O., Aigner, W., Aurenhammer, F., Dobiášová, K.Č., Jüttler, B.: Arc triangulations. In: Proc. 26th Eur. Worksh. Comp. Geometry (EuroCG 2010), Dortmund, Germany, pp. 17–20 (2010)Google Scholar
  2. 2.
    Andrade Jr., J.S., Herrmann, H.J., Andrade, R.F.S., da Silva, L.R.: Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs. Physics Review Letters 94, 018702 (2005); arXiv:cond-mat/0406295CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Wagner, D.: Using graph layout to visualize train interconnection data. J. Graph Algorithms Appl. 4(3), 135–155 (2000), http://jgaa.info/accepted/00/BrandesWagner00.4.3.pdf CrossRefMATHGoogle Scholar
  4. 4.
    Cheng, C.C., Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Drawing planar graphs with circular arcs. Discrete Comput. Geom. 25(3), 405 (2001), doi:10.1007/s004540010080MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chernobelskiy, R., Cunningham, K., Goodrich, M.T., Kobourov, S.G., Trott, L.: Force-directed Lombardi-style graph drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 320–331. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete Math. 9(3), 349–359 (1996), doi:10.1137/S0895480194264010MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1), 31–52 (2005), http://jgaa.info/accepted/2005/Dickerson+2005.9.1.pdf MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Löffler, M.: Planar and poly-arc Lombardi drawings. ArXiv e-prints abs/1109.0345, arXiv:1109.0345 (September 2011)Google Scholar
  9. 9.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing Trees With Perfect Angular Resolution and Polynomial Area. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 183–194. Springer, Heidelberg (2011), doi:10.1007/978-3-642-18469-7_17; arXiv:1009.0581CrossRefGoogle Scholar
  10. 10.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi Drawings of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 195–207. Springer, Heidelberg (2011), doi:10.1007/978-3-642-18469-7_18; arXiv:1009.0579CrossRefGoogle Scholar
  11. 11.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-Confluent Drawings. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg (2006), doi:10.1007/11618058_16; arXiv:cs/0510024v1CrossRefGoogle Scholar
  12. 12.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorithmica 47(4), 439–452 (2007), doi:10.1007/s00453-006-0159-8MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Eppstein, D., Löffler, M., Mumford, E., Nöllenburg, M.: Optimal 3D Angular Resolution for Low-Degree Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 208–219. Springer, Heidelberg (2011), doi:10.1007/978-3-642-18469-7_19; arXiv:1009.0045CrossRefGoogle Scholar
  14. 14.
    Finkel, B., Tamassia, R.: Curvilinear Graph Drawing Using the Force-Directed Method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005), doi:10.1007/978-3-540-31843-9_46CrossRefGoogle Scholar
  15. 15.
    Garg, A., Tamassia, R.: Planar Drawings and Angular Resolution: Algorithms and Bounds. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994), doi:10.1007/BFb0049393CrossRefGoogle Scholar
  16. 16.
    Goodrich, M.T., Wagner, C.G.: A framework for drawing planar graphs with curves and polylines. Journal of Algorithms 37(2), 399–421 (2000), doi:10.1006/jagm.2000.1115MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gutwenger, C., Mutzel, P.: Planar Polyline Drawings With Good Angular Resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999), doi:10.1007/3-540-37623-2_13CrossRefGoogle Scholar
  18. 18.
    Hirsch, M., Meijer, H., Rappaport, D.: Biclique Edge Cover Graphs and Confluent Drawings. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 405–416. Springer, Heidelberg (2007), doi:10.1007/978-3-540-70904-6_39CrossRefGoogle Scholar
  19. 19.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Computer Graphics Forum 28, 983–990 (2009), doi:10.1111/j.1467-8659.2009.01450.xCrossRefGoogle Scholar
  20. 20.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996), doi:10.1007/BF02086606MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lombardi, M., Hobbs, R.: Mark Lombardi: Global Networks. Independent Curators (2003)Google Scholar
  22. 22.
    Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discrete Math. 7(2), 172–183 (1994), doi:10.1137/S0895480193242931MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Matsakis, N.: Transforming a random graph drawing into a Lombardi drawing. ArXiv ePrints abs/1012.2202, arXiv:1012.2202 (December 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian A. Duncan
    • 1
  • David Eppstein
    • 2
  • Michael T. Goodrich
    • 2
  • Stephen G. Kobourov
    • 3
  • Maarten Löffler
    • 2
  1. 1.Department of Computer ScienceLouisiana Tech Univ.RustonUSA
  2. 2.Department of Computer ScienceUniversity of CaliforniaIrvineUSA
  3. 3.Department of Computer ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations