Triangulations with Circular Arcs

  • Oswin Aichholzer
  • Wolfgang Aigner
  • Franz Aurenhammer
  • Kateřina Čech Dobiášová
  • Bert Jüttler
  • Günter Rote
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)


An important objective in the choice of a triangulation is that the smallest angle becomes as large as possible. In the straight-line case, it is known that the Delaunay triangulation is optimal in this respect. We propose and study the concept of a circular arc triangulation—a simple and effective alternative that offers flexibility for additionally enlarging small angles—and discuss its applications in graph drawing.


Planar Graph Delaunay Triangulation Triangular Mesh Simple Polygon Minimum Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aichholzer, O., Aigner, W., Aurenhammer, F., Čech Dobiášová, K., Jüttler, B.: Arc triangulations. In: Proc. 26th European Workshop Comput. Geometry, pp. 17–20 (2010)Google Scholar
  2. 2.
    Aichholzer, O., Rote, G., Schulz, A., Vogtenhuber, B.: Pointed drawings of planar graphs. In: Proc. 19th Ann. Canadian Conf. Comput. Geometry, pp. 237–240 (2007)Google Scholar
  3. 3.
    Aichholzer, O., Aurenhammer, F., Hackl, T., Juettler, B., Oberneder, M., Sir, Z.: Computational and structural advantages of circular boundary representation. Int’l J. Computational Geometry & Applications 21, 47–69 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. Computing in Euclidean Geometry. LN Series on Computing, vol. 4, pp. 47–123. World Scientific (1995)Google Scholar
  5. 5.
    Boivin, C., Ollivier-Gooch, C.: Guaranteed-quality triangular mesh generation for domains with curved boundaries. International Journal for Numerical Methods in Engineering 55, 1185–1213 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Burkard, R.E., Rendl, F.: Lexicographic bottleneck problems. Operations Research Letters 10, 303–308 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Carré, B.: Graphs and networks. Oxford University Press (1979)Google Scholar
  8. 8.
    Cheng, C.C., Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Drawing Planar Graphs With Circular Arcs. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 117–126. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing—Algorithms for the Visualization of Graphs. Prentice-Hall (1999)Google Scholar
  11. 11.
    Di Battista, G.D., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete Mathematics 9, 349–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi Drawings of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 195–207. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Edelsbrunner, H., Rote, G., Welzl, E.: Testing the necklace condition for shortest tours and optimal factors in the plane. Theor. Comput. Sci. 66, 157–180 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Efrat, A., Erten, C., Kobourov, S.G.: Fixed-Location Circular-Arc Drawing of Planar Graphs. Journal of Graph Algorithms and Applications 11, 145–164 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Finkel, B., Tamassia, R.: Curvilinar Graph Drawing Using The Force-Directed Method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F.T., Symvonis, A., Welzl, E., Wöginger, G.: Drawing graphs in the plane with high resolution. SIAM J. Computing 22, 1035–1052 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fortune, S.: Voronoi diagrams and Delaunay triangulations. Computing in Euclidean Geometry. LN Series on Computing, vol. 4, pp. 225–265. World Scientific (1995)Google Scholar
  18. 18.
    Goodrich, M.I., Wagner, C.G.: A framework for drawing planar graphs with curves and polylines. J. Algorithms 37, 399–421 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathematics 23, 309–311 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lloyd, E.L.: On triangulations of a set of points in the plane. In: Proc. 18th IEEE Symp. on Foundations of Computer Science, pp. 228–240 (1977)Google Scholar
  21. 21.
    Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. In: Proc. 24th Ann., pp. 527–538 (1992)Google Scholar
  22. 22.
    Marchi, E., Oviedo, J.A.: Lexicographic optimality in the multiple objective linear programming: The nucleolar solution. European Journal of Operational Research 57, 355–359 (1992)CrossRefzbMATHGoogle Scholar
  23. 23.
    Nishizeki, T., Rahman, M.S.: Planar graph drawing. World Scientific (2004)Google Scholar
  24. 24.
    Pedoe, D.: A course of geometry for colleges and universities. Cambridge University Press (1970)Google Scholar
  25. 25.
    Rote, G.: Two solvable cases of the traveling salesman problem. PhD Thesis, TU Graz, Institute for Mathematics (1988)Google Scholar
  26. 26.
    Shewchuk, J.: What is a good linear element? Interpolation, conditioning, and quality measures. In: Proc. 11th International Meshing Roundtable, pp. 115–126 (2002)Google Scholar
  27. 27.
    Shostak, R.: Deciding linear inequalities by computing loop residues. Journal of the ACM 28, 769–779 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sugiyama, K.: Graph Drawing and Applications for Software and Knowledge Engineers. World Scientific (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oswin Aichholzer
    • 1
  • Wolfgang Aigner
    • 2
  • Franz Aurenhammer
    • 2
  • Kateřina Čech Dobiášová
    • 3
  • Bert Jüttler
    • 3
  • Günter Rote
    • 4
  1. 1.Institute for Software TechnologyGraz University of TechnologyAustria
  2. 2.Institute for Theoretical Computer ScienceGraz University of TechnologyAustria
  3. 3.Institute of Applied GeometryJohannes Kepler University LinzAustria
  4. 4.Institut für InformatikFreie Universität BerlinGermany

Personalised recommendations