Monotone Crossing Number

  • János Pach
  • Géza Tóth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)


The monotone crossing number of G is defined as the smallest number of crossing points in a drawing of G in the plane, where every edge is represented by an x-monotone curve, that is, by a connected continuous arc with the property that every vertical line intersects it in at most one point. It is shown that this parameter can be strictly larger than the classical crossing number cr(G), but it is bounded from above by 2cr2(G). This is in sharp contrast with the behavior of the rectilinear crossing number, which cannot be bounded from above by any function of cr(G).


crossing number monotone drawing 


  1. 1.
    Bienstock, D., Dean, N.: Bounds for rectilinear crossing numbers. J. Graph Theory 17, 333–348 (1993)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2005)MATHGoogle Scholar
  3. 3.
    Erdős, P., Guy, R.K.: Crossing number problems, Amer. Math. Monthly 80, 52–58 (1973)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math. 11, 229–233 (1948)MathSciNetMATHGoogle Scholar
  5. 5.
    Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone drawings, and level-planarity (to appear)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete, SIAM J. Alg. Disc. Meth. 4, 312–316 (1983)CrossRefMATHGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theoretical Computer Science 1, 237–267 (1976)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Guy, R.K.: The decline and fall of Zarankiewicz’s theorem. In: Guy, R.K. (ed.) Proof Techniques in Graph Theory, pp. 63–69. Academic Press, New York (1969)Google Scholar
  9. 9.
    Pach, J., Sterling, E.: Conways conjecture for monotone thrackles. Amer. Math. Monthly 118, 544–548 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Pach, J., Tóth, G.: Which crossing number is it, anyway? J. Combin. Theory Ser. B 80, 225–246 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Pach, J., Tóth, G.: Thirteen problems on crossing numbers. Geombinatorics 9, 194–207 (2000)MathSciNetMATHGoogle Scholar
  12. 12.
    Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46, 39–47 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Odd crossing number and crossing number are not the same. Discrete Comput. Geom. 39, 442–454 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removin independently even crossings. SIAM J. Discrete Math. 24, 379–393 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Tóth, G.: Note on the pair-crossing number and the odd-crossing number. Discrete Comput. Geom. 39, 791–799 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Tóth, G.: A better bound for the pair-crossing number (manuscript)Google Scholar
  17. 17.
    Turán, P.: A note of welcome. J. Graph Theory 1, 7–9 (1977)CrossRefGoogle Scholar
  18. 18.
    Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8, 45–53 (1970)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Valtr, P.: On the pair-crossing number. In: Combinatorial and Computational Geometry. Math. Sci. Res. Inst. Publ., vol. 52, pp. 569–575. Cambridge Univ. Press, Cambridge (2005)Google Scholar
  20. 20.
    Woodall, D.R.: Thrackles and deadlock. In: Welsh, D.J.A. (ed.) Combinatorial Mathematics and Its Applications, pp. 335–348. Academic Press (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • János Pach
    • 1
  • Géza Tóth
    • 1
  1. 1.Rényi InstituteBudapestHungary

Personalised recommendations