Overloaded Orthogonal Drawings

  • Evgenios M. Kornaropoulos
  • Ioannis G. Tollis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)


Orthogonal drawings are widely used for graph visualization due to their high clarity of representation. In this paper we present a technique called Overloaded Orthogonal Drawing. We first place the vertices on grid points following a relaxed version of dominance drawing, called weak dominance condition. Edge routing is implied automatically by the vertex coordinates. In order to simplify these drawings we use an overloading technique. All algorithms are simple and easy to implement and can be applied to directed acyclic graphs, planar, non-planar and also undirected graphs. We also present bounds on the number of bends and the area. Overloaded Orthogonal drawings present several interesting properties such as efficient visual edge confirmation as well as simplicity and clarity of the drawing.


  1. 1.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Transactions on Computers 49(8), 826–840 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Computational Geometry: Theory and Applications 9(3), 159–180 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Biedl, T.C., Madden, B.P., Tollis, I.G.: The Three-Phase Method: A Unified Approach to Orthogonal Graph Drawing. Int. J. Comput. Geometry Appl. 10(6), 553–580 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of graphs. Prentice - Hall, New Jersey (1998)MATHGoogle Scholar
  5. 5.
    Di Battista, G., Tamassia, R., Tollis, I.G.: Area Requirement and Symmetry Display of Planar Upward Drawings. Discrete and Comput. Geom. 7(4), 381–401 (1992)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent Drawings: Vizualizing Non-planar Diagrams in a Planar Way. Journal of Graph Algorithms and Applications 9(1), 31–52 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent Layered Drawings. Algorithmica 47(4), 439–452 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Even, S., Tarjan, R.: Computing an st-numbering. Theoretical Computer Science 2(3), 339–344 (1976)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fößmeier, U., Kaufmann, M.: Algorithms and Area Bounds for Nonplanar Orthogonal Drawings. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 134–145. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Kornaropoulos, E.M., Tollis, I.G.: Weak Dominance Drawings and Linear Extension Diameter, arXiv:1108.1439 (2011)Google Scholar
  11. 11.
    Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley & Sons, Inc., New York (1990)MATHGoogle Scholar
  12. 12.
    Nomura, K., Tayu, S., Ueno, S.: On the Orthogonal Drawing of Outerplanar Graphs. Journal IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88-A(6), 1583–1588 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Papakostas, A., Tollis, I.G.: Efficient Orthogonal Drawings of High Degree Graphs. Algorithmica 26(1), 100–125 (2000)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Papakostas, A., Tollis, I.G.: Algorithms for Area-Efficient Orthogonal Drawings. Computational Geometry Theory and Applications 9(1-2), 83–110 (1998)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Papamanthou, C., Tollis, I.G.: Algorithms for computing a parameterized st-orientation. Theoretical Computer Science 408(2-3), 224–240 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Papamanthou, C., Tollis, I.G.: Applications of Parameterized st-Orientations. Journal of Graph Algorithms and Applications 14(2), 337–365 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rahman, S., Nishizeki, T., Naznin, M.: Orthogonal Drawings of Plane Graphs Without Bends. Journal of Graph Algorithms and Applications 7(4), 335–362 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Storer, J.: On minimal node-cost planar embeddings. Networks 14(2), 181–212 (1984)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Computing 16(3), 421–444 (1987)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Tamassia, R., Tollis, I.G.: Planar Grid Embeddings in Linear Time. IEEE Transactions on Circuits and Systems 36(9), 1230–1234 (1989)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vismara, L., Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Vargiu, F.: Experimental studies on graph drawing algorithms. Software: Practice and Experience 30(11), 1235–1284 (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Evgenios M. Kornaropoulos
    • 1
    • 2
  • Ioannis G. Tollis
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of CreteHeraklionGreece
  2. 2.Institute of Computer ScienceFoundation for Research and Technology-HellasHeraklionGreece

Personalised recommendations