Visual Community Detection: An Evaluation of 2D, 3D Perspective and 3D Stereoscopic Displays

  • Nicolas Greffard
  • Fabien Picarougne
  • Pascale Kuntz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)


3D drawing problems of the 90’s were essentially restricted on representations in 3D perspective. However, recent technologies offer 3D stereoscopic representations of high quality which allow the introduction of binocular disparities, which is one of the main depth perception cues, not provided by the 3D perspective. This paper explores the relevance of stereoscopy for the visual identification of communities, which is a task of great importance in the analysis of social networks. A user study conducted on 35 participants with graphs of various complexity shows that stereoscopy outperforms 3D perspective in the vast majority of the cases. When comparing stereoscopy with 2D layouts, the response time is significantly lower for 2D but the quality of the results closely depend on the graph complexity: for a large number of clusters and a high probability of cluster overlapping stereoscopy outperforms 2D whereas for simple structures 2D layouts are more efficient.


Community Detection Binocular Disparity Graph Drawing Straight Line Drawing Inter Cluster Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kolmogorov, A., Barzdin, Y.: Abour realization of sets in 3-dimensional space, problems cybernet (1967)Google Scholar
  2. 2.
    Rosenberg, A.L.: Three-dimensional vlsi: a case study. J. ACM 30, 397–416 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Di Battista, G., Patrignani, M., Vargiu, F.: A Split&Push Approach to 3D Orthogonal Drawing. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 87–101. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Eades, P., Symvonis, A., Whitesides, S.: Three-dimensional orthogonal graph drawing algorithms. Discrete Applied Mathematics 103(1-3), 55–87 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wood, D.R.: Optimal three-dimensional orthogonal graph drawing in the general position model. Theor. Comput. Sci. 299, 151–178 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Halpin, H., Zielinski, D., Brady, R., Kelly, G.: Exploring Semantic Social Networks using Virtual Reality. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 599–614. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Teyseyre, A., Campo, M.: An overview of 3D software visualization. IEEE Trans. on Visualization and Computer Graphics 15(1), 114–135 (2009)CrossRefGoogle Scholar
  8. 8.
    Ware, C., Mitchell, P.: Visualizing graphs in three dimensions. ACM Transactions on Applied Perception 5, 2–15 (2008)CrossRefGoogle Scholar
  9. 9.
    Belcher, D., Billinghurst, M., Hayes, S., Stiles, R.: Using augmented reality for visualizing complex graphs in three dimensions. In: ISMAR, pp. 84–92 (2003)Google Scholar
  10. 10.
    Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Auber, D., Chiricota, Y., Jourdan, F., Melancon, G.: Multiscale visualization of small world networks. In: INFOVIS 2003: Proceedings of the IEEE Symposium on Information Visualization (INFOVIS 2003), pp. 75–81 (2003)Google Scholar
  12. 12.
    Henry, N., Bezerianos, A., Fekete, J.D.: Improving the readability of clustered social networks using node duplications (2008)Google Scholar
  13. 13.
    Landy, M.S., Maloney, L.T., Young, M.J.: Psychophysical estimation of the human depth combination rule. vol. 1383, pp. 247–254. SPIE (1991)Google Scholar
  14. 14.
    Hubona, G.S., Wheeler, P.N., Shirah, G.W., Brandt, M.: The relative contributions of stereo, lighting, and background scenes in promoting 3D depth visualization. ACM Trans. Comput.-Hum. Interact. 6, 214–242 (1999)CrossRefGoogle Scholar
  15. 15.
    van Schooten, B.W., van Dijk, E.M.A.G., Zudilova-Seinstra, E., Suinesiaputra, A., Reiber, J.H.C.: The effect of stereoscopy and motion cues on 3D interpretation task performance. In: Proceedings of the International Conference on Advanced Visual Interfaces, AVI 2010, pp. 167–170. ACM, New York (2010)Google Scholar
  16. 16.
    Ware, C., Mitchell, P.: Reevaluating stereo and motion cues for visualizing graphs in three dimensions. In: Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization, APGV 2005, vol. 95. ACM (2005)Google Scholar
  17. 17.
    Cutting, J.: How the eye measures reality and virtual reality. Behavior Research Methods, Instrumentation, and Computers 29, 29–36 (1997)CrossRefGoogle Scholar
  18. 18.
    Saracini, C., Franke, R., Blümel, E., Belardinelli, M.: Comparing distance perception in different virtual environments. Cognitive Processing 10, 294–296 (2009)CrossRefGoogle Scholar
  19. 19.
    Ware, C., Franck, G.: Evaluating stereo and motion cues for visualizing information nets in three dimensions. ACM Transactions on Graphics 15, 121–139 (1996)CrossRefGoogle Scholar
  20. 20.
    Domini, F., Caudek, C., Tassinari, H.: Stereo and motion information are not independently processed by the visual system. Vision Res. 46, 1707–1723 (2006)CrossRefGoogle Scholar
  21. 21.
    Garbers, J., Promel, H.J., Steger, A.: Finding clusters in vlsi circuits. In: Proceedings of ICCAD 1990, pp. 520–523 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicolas Greffard
    • 1
  • Fabien Picarougne
    • 1
  • Pascale Kuntz
    • 1
  1. 1.KoD Research TeamLINA - Polytech’NantesNantesFrance

Personalised recommendations