Confluent Hasse Diagrams

  • David Eppstein
  • Joseph A. Simons
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)


We show that a transitively reduced digraph has a confluent upward drawing if and only if its reachability relation has order dimension at most two. In this case, we construct a confluent upward drawing with O(n 2) features, in an O(n) ×O(n) grid in O(n 2) time. For the digraphs representing series-parallel partial orders we show how to construct a drawing with O(n) features in an O(n) ×O(n) grid in O(n) time from a series-parallel decomposition of the partial order. Our drawings are optimal in the number of confluent junctions they use.


Partial Order Linear Order Directed Acyclic Graph Decomposition Tree Junction Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aeschlimann, A., Schmid, J.: Drawing orders using less ink. Order 9(1), 5–13 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amer, P., Chassot, C., Connolly, T., Diaz, M., Conrad, P.: Partial-order transport service for multimedia and other applications. IEEE/ACM Transactions on Networking 2(5), 440–456 (1994)CrossRefGoogle Scholar
  3. 3.
    Baker, K.A., Fishburn, P.C., Roberts, F.S.: Partial orders of dimension 2. Networks 2(1), 11–28 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1967)zbMATHGoogle Scholar
  6. 6.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theoret. Comput. Sci. 61(2-3), 175–198 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dickerson, M.T., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1), 3–52 (2005), MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-Confluent Drawings. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorithmica 47(4), 439–452 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gansner, E., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge bundling for visualizing large graphs. In: IEEE Pacific Visualization Symposium (PacificVis), pp. 187–194 (2011)Google Scholar
  11. 11.
    Ganter, B., Kuznetsov, S.O.: Stepwise Construction of the Dedekind-MacNeille Completion. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 295–302. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Güting, R.H., Nurmi, O., Ottmann, T.: Fast algorithms for direct enclosures and direct dominances. J. Algorithms 10(2), 170–186 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    de la Higuera, C., Nourine, L.: Drawing and encoding two-dimensional posets. Theoret. Comput. Sci. 175(2), 293–308 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hirsch, M., Meijer, H., Rappaport, D.: Biclique Edge Cover Graphs and Confluent Drawings. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 405–416. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Hui, P., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Train tracks and confluent drawings. Algorithmica 47(4), 465–479 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hutton, M.D., Lubiw, A.: Upward planar drawing of single source acyclic digraphs. SIAM J. Comput. 25(2), 291–311 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jourdan, G.V., Rival, I., Zaguia, N.: Upward Drawing on the Plane Grid Using Less Ink. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 318–327. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  19. 19.
    Kelly, D., Rival, I.: Planar lattices. Canad. J. Math. 27(3), 636–665 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lodaya, K., Weil, P.: Series-Parallel Posets: Algebra, Automata and Languages. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 555–565. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Ma, T.H., Spinrad, J.: Transitive closure for restricted classes of partial orders. Order 8(2), 175–183 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    MacNeille, H.M.: Partially ordered sets. Trans. Amer. Math. Soc. 42(3), 416–460 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mannila, H., Meek, C.: Global partial orders from sequential data. In: Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 161–168. ACM, New York (2000)CrossRefGoogle Scholar
  24. 24.
    Möhring, R.H.: Computationally tractable classes of ordered sets. In: Rival, I. (ed.) Algorithms and Order, pp. 105–193. Kluwer Academic Publishers (1989)Google Scholar
  25. 25.
    Möhring, R.H., Schäffter, M.W.: Scheduling series-parallel orders subject to 0/1-communication delays. Parallel Comput. 25(1), 23–40 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inform. Process. Lett. 71(5-6), 199–204 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Novák, V.: Über eine Eigenschaft der Dedekind-MacNeilleschen Hülle. Math. Ann. 179, 337–342 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Platt, C.R.: Planar lattices and planar graphs. J. Combinatorial Theory, Ser. B 21(1), 30–39 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Eppstein
    • 1
  • Joseph A. Simons
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations