How to Visualize the K-Root Name Server (Demo)

  • Giuseppe Di Battista
  • Claudio Squarcella
  • Wolfgang Nagele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)

Abstract

We present a system that visualizes the evolution of the service provided by one of the most popular root name servers, called K-root, operated by the RIPE Network Coordination Centre (RIPE NCC) and distributed in several locations (instances) worldwide. The system can be used either to monitor what happened during a prescribed time interval or to observe the status of the service in near real-time. The system visualizes how and when the clients of K-root migrate from one instance to another, how the number of clients associated with each instance changes over time, and what are the instances that contribute to offer the service to a selected Internet Service Provider. In addition, the visualization aims at distinguishing usual from unusual operational patterns. This helps not only to improve the quality of the service but also to spot security-related issues and to investigate unexpected routing changes.

References

  1. 1.
    Akbari Jokar, M., Shoja Sangchooli, A.: Constructing a block layout by face area. The International Journal of Advanced Manufacturing Technology 54, 801–809 (2011)CrossRefGoogle Scholar
  2. 2.
    Biedl, T., Ruiz Velázquez, L.: Orthogonal Cartograms with Few Corners Perface. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 98–109. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Biedl, T., Velázquez, L.E.R.: Drawing planar 3-trees with given face-areas (2010)Google Scholar
  4. 4.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16, 575–577 (1973)CrossRefMATHGoogle Scholar
  5. 5.
    Carpano, M.-J.: Automatic display of hierarchized graphs for computer-aided decision analysis. IEEE Transactions on Systems, Man and Cybernetics 10(11), 705–715 (1980)CrossRefGoogle Scholar
  6. 6.
    Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Planar map graphs. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998. ACM (1998)Google Scholar
  7. 7.
    Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Recognizing hole-free 4-map graphs in cubic time. Algorithmica 45(2), 227–262 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Colitti, L., Di Battista, G., Mariani, F., Patrignani, M., Pizzonia, M.: Visualizing interdomain routing with BGPlay. Journal of Graph Algorithms and Applications, Special Issue on the 2003 Symposium on Graph Drawing, GD 2003  9(1), 117–148 (2005)MATHGoogle Scholar
  9. 9.
    Cortese, P.F., Di Battista, G., Moneta, A., Patrignani, M., Pizzonia, M.: Topographic visualization of prefix propagation in the internet. IEEE Transactions on Visualization and Computer Graphics 12(5), 725–732 (2006)CrossRefGoogle Scholar
  10. 10.
    de Berg, M., Mumford, E., Speckmann, B.: Optimal BSPs and rectilinear cartograms. In: Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems, GIS 2006, pp. 19–26. ACM, New York (2006)Google Scholar
  11. 11.
    Didimo, W., Liotta, G., Romeo, S.A.: Topology-Driven Force-Directed Algorithms. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 165–176. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Erten, C., Harding, P., Kobourov, S., Wampler, K., Yee, G.: GraphAEL: Graph Animations with Evolving Layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Fabrikant, S.I., Skupin, A.: Cognitively plausible information visualization. Exploring Geovisualization, 667–690 (November 2005)Google Scholar
  14. 14.
    Gansner, E., Hu, Y., Kaufmann, M., Kobourov, S.: Optimal Polygonal Representation of Planar Graphs. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 417–432. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Gastner, M.T., Newman, M.E.J.: Diffusion-based method for producing density-equalizing maps. Proceedings of the National Academy of Sciences of the United States of America 101(20), 7499–7504 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Huffaker, B., Fomenkov, M. Claffy, K.: Influence maps - a novel 2-d visualization of massive geographically distributed data sets. Internet Protocol Forum (October 2008)Google Scholar
  17. 17.
    Inoue, R., Shimizu, E.: A new algorithm for continuous area cartogram construction with triangulation of regions and restriction on bearing changes of edges. Cartography and Geographic Information Science 33(2), 115–125 (2006)CrossRefGoogle Scholar
  18. 18.
    Kawaguchi, A., Nagamochi, H.: Orthogonal Drawings for Plane Graphs with Specified Face Areas. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 584–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Mashima, D., Kobourov, S., Hu, Y.: Visualizing Dynamic Data with Maps. In: Proc. 4th IEEE Pacific Visualization Symposium (March 2011)Google Scholar
  20. 20.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: Concepts and applications of Voronoi diagrams, 2nd edn. Probability and Statistics. Wiley, NYC (2000)CrossRefMATHGoogle Scholar
  21. 21.
    Ouyang, M., Revesz, P.Z.: Algorithms for cartogram animation. In: Proceedings of the 2000 International Symposium on Database Engineering & Applications, IDEAS 2000, pp. 231–235. IEEE Computer Society, Washington, DC, USA (2000)Google Scholar
  22. 22.
    Rahman, M. S., Miura, K., Nishizeki, T.: Octagonal drawings of plane graphs with prescribed face areas. Comput. Geom. Theory Appl. 42, 214–230 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Reitsma, R., Trubin, S.: Information space partitioning using adaptive voronoi diagrams. Information Visualization 6, 123–138 (2007)CrossRefGoogle Scholar
  24. 24.
    Robertson, G., Fernandez, R., Fisher, D., Lee, B., Stasko, J.: Effectiveness of animation in trend visualization. IEEE Transactions on Visualization and Computer Graphics 14, 1325–1332 (2008)CrossRefGoogle Scholar
  25. 25.
    Thorup, M.: Map graphs in polynomial time. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS 1998 (1998)Google Scholar
  26. 26.
    Tollis, I.G., Di Battista, G., Eades, P., Tamassia, R.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall (1998)Google Scholar
  27. 27.
    van Kreveld, M., Speckmann, B.: On rectangular cartograms. Comput. Geom. Theory Appl. 37, 175–187 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • Claudio Squarcella
    • 1
  • Wolfgang Nagele
    • 2
  1. 1.Dipartimento di Informatica e AutomazioneUniversità Roma TreItaly
  2. 2.RIPE NCCAmsterdamThe Netherlands

Personalised recommendations