Generalizing Geometric Graphs

  • Edith Brunel
  • Andreas Gemsa
  • Marcus Krug
  • Ignaz Rutter
  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)

Abstract

Network visualization is essential for understanding the data obtained from huge real-world networks such as flight-networks, the AS-network or social networks. Although we can compute layouts for these networks reasonably fast, even the most recent display media are not capable of displaying these layouts in an adequate way. Moreover, the human viewer may be overwhelmed by the displayed level of detail. The increasing amount of data therefore requires techniques aiming at a sensible reduction of the visual complexity of huge layouts.

We consider the problem of computing a generalization of a given layout reducing the complexity of the drawing to an amount that can be displayed without clutter and handled by a human viewer. We take a first step at formulating graph generalization within a mathematical model and we consider the resulting problems from an algorithmic point of view. Although these problems are NP-hard in general, we provide efficient approximation algorithms as well as efficient and effective heuristics. At the end of the paper we showcase some sample generalizations.

References

  1. 1.
    Abello, J., Kobourov, S.G., Yusufov, R.: Visualizing Large Graphs with Compound-Fisheye Views and Treemaps. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 431–441. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Abello, J., Korn, J., Finocchi, I.: Graph sketches. In: Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS 2001), p. 67. IEEE Computer Society (2001)Google Scholar
  3. 3.
    Bentley, J.L., Saxe, J.B.: Decomposable searching problems I. static-to-dynamic transformation. Journal of Algorithms 1(4), 301–358 (1980)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bohn, R.E., Short, J.E.: How much information? 2009 Report on American consumers. Global Information Industry Center, University of California, San Diego (2009)Google Scholar
  5. 5.
    Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowledge and Data Engineering 20, 172–188 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Brunel, E., Gemsa, A., Krug, M., Rutter, I., Wagner, D.: Generalizing Geometric Graphs. Technical Report 27, Karlsruhe Institute of Technology (2011)Google Scholar
  7. 7.
    Chazelle, B., Cole, R., Preparata, F.P., Yap, C.: New upper bounds for neighbor searching. Information and Control 68(1-3), 105–124 (1986)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chazelle, B.: Functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17, 427–462 (1988)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathematics 86(1-3), 165–177 (1990)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Davis, T.A.: University of florida sparse matrix collection. NA Digest 92 (1994)Google Scholar
  11. 11.
    de Berg, M., Khosravi, A.: Optimal Binary Space Partitions in the Plane. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 216–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Dobkin, D., Friedman, S., Supowit, K.: Delaunay graphs are almost as good as complete graphs. Discrete & Computational Geometry 5, 399–407 (1990)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Eades, P., Feng, Q.-W.: Multilevel Visualization of Clustered Graphs. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 101–112. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Edelsbrunner, H., Guibas, L., Sharir, M.: The upper envelope of piecewise linear functions: Algorithms and applications. Discr. & Comp. Geometry 4, 311–336 (1989)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Furnas, G.W.: Generalized fisheye views. SIGCHI Bull. 17, 16–23 (1986)CrossRefGoogle Scholar
  16. 16.
    Gaertler, M.: Clustering. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 178–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)Google Scholar
  18. 18.
    Görke, R., Gaertler, M., Wagner, D.: Lunarvis - Analytic Visualizations of Large Graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 352–364. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Hachul, S., Jünger, M.: Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Halldórsson, M., Radhakrishnan, J.: Greed is good: Approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18, 145–163 (1997)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Harel, D., Koren, Y.: Graph Drawing by High-Dimensional Embedding. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 207–219. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. In: Proc. of the 11th Eurographics/IEEE-VGTC Symp. on Vis, pp. 983–990 (2009)Google Scholar
  23. 23.
    Koren, Y., Carmel, L., Harel, D.: Drawing huge graphs by algebraic multigrid optimization. Multiscale Modeling and Simulation 1, 645–673 (2003)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mackaness, W.A., Beard, K.M.: Use of graph theory to support map generalization. Cartography and Geographic Information Science 20, 210–221 (1993)CrossRefGoogle Scholar
  25. 25.
    Mackaness, W.A., Ruas, A., Sarjakoski, L.T. (eds.): Generalisation of Geographic Information. Cartographic Modelling and Applications. Elsevier B.V. (2007)Google Scholar
  26. 26.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal of Visual Languages & Computing 6(2), 183–210 (1995)CrossRefGoogle Scholar
  27. 27.
    Openstreetmap database (2011), http://www.openstreetmap.de/
  28. 28.
    Quigley, A., Eades, P.: Fade: Graph Drawing, Clustering, and Visual Abstraction. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Saalfeld, A.: Map Generalization as a Graph Drawing Problem. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 444–451. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  30. 30.
    Sarkar, M., Brown, M.H.: Graphical fisheye views of graphs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1992, pp. 83–91. ACM, New York (1992)Google Scholar
  31. 31.
    Telea, A., Ersoy, O.: Image-based edge bundles: Simplified visualization of large graphs. Computer Graphics Forum 29(3), 843–852 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Edith Brunel
    • 1
  • Andreas Gemsa
    • 1
  • Marcus Krug
    • 1
  • Ignaz Rutter
    • 1
  • Dorothea Wagner
    • 1
  1. 1.Faculty of InformaticsKarlsruhe Institute of Technology (KIT)Germany

Personalised recommendations